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Introduction 

In the course of their undergraduate careers, most mathematics majors see 
little beyond "standard mathematics:" basic real and complex analysis, ab
stract algebra, some differential geometry, etc. There are few adventures in 
other territories, and few opportunities to visit some of the more exotic cor
ners of mathematics. The goal of this book is to offer such an opportunity, by 
way of a visit to the p-adic universe. Such a visit offers a glimpse of a part of 
mathematics which is both important and fun, and which also is something 
of a meeting point between algebra and analysis. 

Over the last century, p-adic numbers and p-adic analysis have come to 
playa central role in modern number theory. This importance comes from 
the fact that they afford a natural and powerful language for talking about 
congruences between integers, and allow the use of methods borrowed from 
calculus and analysis for studying such problems. More recently, p-adic num
bers have shown up in other areas of mathematics, and even in physics. 

For all their importance, p-adic numbers are not an extremely difficult 
concept; in fact, they are quite accessible to an undergraduate audience. The 
goal of these notes is t() realize this possibility, taking its readers for a short 
promenade along the p-adic path. Our aim is sightseeing, rather than a 
scientific expedition, so we will not worry too much if we fail to emphasize 
a subtle point here and there, nor if our theorems are less general than they 
could be, nor, in fact, if we do not learn all there is to know. Rather, our goal 
is to introduce the reader to the rather strange world of the p-adic numbers, 
and to begin to make it feel familiar. What we will cover will not be sufficient 
for those students which will need to use p-adic numbers as a research tool. 
For them, a lot more reading will be necessary (and in an appendix we discuss 
some of the texts that are available for further reading). Instead, we try to 
touch a lot of bases, and set the stage for further study. 

There are many ways to begin our task. Of the available options, I chose 
to go with the theory of absolute values on fields, and to view the p-adic 
numbers as directly analogous to the real numbers. In this approach, the 
main ingredient is a change of attitude about absolute values. It starts with 
the observation that from an algebraic point of view there is no reason to 
view the usual absolute value on the field IQ of rational numbers as a given. 
Rather, any function satisfying the same basic properties should be just as 
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good. If we start with the usual absolute value and look for a completion l 

of Q as a metric space, we get the real numbers; starting with a different 
absolute value, we get something else. What that something else is, and why 
it is interesting, is the subject of this book. 

Besides its importance, the study of p-adic numbers is attractive because 
it blends together so many parts of mathematics. While it is certainly a 
part of number theory, its language is often the language of analysis, and 
its theorems are often analogous to, but slightly different from, those found 
in calculus textbooks. Both the analogy and the differences are fascinating, 
so that at times one gets the feeling that things are slightly out of whack, 
and p-adic analysis seems like classical analysis in a distorting mirror. I have 
tried to include many examples of this sort of thing, and I hope they are 
convincing. 

I have done much less to convince the reader that p-adic numbers are 
actually useful. For the most part, I have limited myself to stating that 
certain things are true or that certain methods are fruitful. In every case, 
developing the details of the application would make this book much harder 
than it is supposed to be. Once again, a lot can be learned from other texts, 
and the student who wants to know should go to the references mentioned in 
the text and in the appendix. 

One final pointer to Appendix B is in order. While they are working 
through the book, some readers may enjoy being able to work with a com
puter software package that can handle p-adic numbers. There aren't many of 
these, but a note about those that do exist has been added to the discussion 
of other sources of information. 

Some business: the pre-requisites for reading this book are a basic knowl
edge of algebra and number theory, and a few courses in calculus or analysis. 
To be a bit more precise, the reader should be familiar with the language of 
congruences, with the basic theory of fields and rings, and with basic con
cepts about point-set topology, continuity, and infinite series. I have tried 
to provide as many definitions (and also informal descriptions) as I could, 
consistent with the requirement that the result not be too ungainly. I hope 
that this approach may be useful both to refresh students' memories of other 
subjects and to display the unity and interconnectedness of mathematics in 
a dramatic way. 

The use of the topics mentioned above as pre-requisites is not uniform. 
Most students will know enough to read the first few chapters without needing 
to run back to their textbooks from other courses. The analysis requirements 
become more serious beginning in Chapter 4, and the algebraic requirements 
come in more strongly in Chapter 5. Even so, the whole book remains2 well 
within the reach of undergraduate mathematics majors. 

1 If you're wondering what a "completion" is, the definition will be met later, in full 
gory detail. Don't worry about it yet. 

21 hope! 
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There are many kinds of books about mathematics, from encyclopedic 
treatises to brief surveys, from dryas dust to boringly chatty. This book 
is closer to being a survey than to being encyclopedic, and is intended to 
be easy to read, but not as bed-time reading: the reader is expected to do 
some work. (Maybe even a lot of work.) To this end, I have included a great 
many problems throughout. The problems are meant to be solved, or at least 
attempted, at about the time when they are met in the text.3 Most of them 
offer an opportunity to work with concepts that have just been introduced, 
and it is the author's fond hope that such problems will help create familiarity 
with the material. The majority of these problems ask the reader to work 
out the details of arguments which have been only sketched in the text, or 
to supply the proofs for statements given in the text (for the most part, this 
is only done when the proof is straightforward, and even then hints are often 
given). Other problems stretch out to mention matters not touched upon in 
the text, to indicate to the reader that there are many themes we have not 
had time to discuss. Finally, many are intended to prepare the reader for the 
discussion to follow. Such problems will often become trivial in the light of 
what comes later (they may be special cases or simple corollaries of theorems 
we will prove) j leaving them for later will only render them boring. 

Besides offering practice and a chance of active interaction with the ma
terial, the many problems are intended to stimulate the reader to read in 
a certain way. In many mathematics textbooks, one finds proofs that are 
"left to the reader" or dismissed as "clear" and throwaway lines mentioning 
interesting sidelines to the material being discussed. The experienced math
ematical reader knows that these are signals to dig out pencil and paper 
and verify what has been said. In this book, I have tried to make sure that 
most such signals are followed by explicit problems. My hope is that this 
will help my less experienced readers gain experience of how to interact with 
mathematical texts. 

A note to the specialists: this book is intended as a pedagogical tool. 
It is not intended as a replacement for the standard references (it is much 
too sketchy for that), nor as a model of elegant or detailed treatment of 
this (or any other) subject. Rather, I have tried to make it fun to work 
with, demanding, and ample. I have often spent time discussing interesting 
mathematics (the point-set topology, for example, or the various definitions 
of the field norm) just because it was interesting. I welcome any comments, 
and ask students in particular to tell me their reactions. 

Every writer creates in his or her mind an imaginary audience for his or 
her text. In the case of this book, what I imagined was an upper-level under
graduate course for mathematics majors. It would include honest-to-goodness 

3r realize this is very different from what most of my readers are used to. Try to think 
of this text as a workbook rather than a textbook: each thing should be done in turn, 
before going on to the next step. 
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undergraduates and not only graduate-level students who just happen not to 
have finished their undergraduate degrees yet. (In other words, this is not 
only for hot-shots, though hot-shots should be welcome too.) The course 
would very likely use an approach where students are asked to read the text, 
attempt the problems, and discuss the results with each other and with their 
instructor. The many problems asking the reader to "make a conjecture," 
or to attempt something ("Can you ... ") presuppose such a situation. For 
emergencies, I have provided some hints and comments on the problems. 
These are usually not complete solutions, but rather attempts to jump-start 
the solution process; they should be used only after some meditation on the 
problem, or they may spoil the fun. 

This book grew from a set of notes for a mini-course given at the "17° Co
loquio Brasileiro de Matematica," the 1989 edition of the bi-annual congress 
of Brazilian mathematicians. It has since been used in a course (much like the 
one described above) at Colby College. I would like to thank the organizers 
of the "Coloquio" for their invitation, and also to thank the students who 
sat through preliminary versions of this material for their interest and for 
their patience with its shortcomings. Many shortcomings will undoubtedly 
remain, and I would like to hear about them (who knows, there may even be 
a second edition someday). Please drop me a note if you have any comments. 

During the final stages of the writing of this book, the author's research 
was partially supported by NSF grant number DMS-9203469. The writing 
was done in three phases, at the Universidade de Sao Paulo, at Queen's 
University at Kingston, Ontario, and at Colby College. I would like to thank 
NSF and all three universities for their support; Colby College, where most 
of the work was done, and whose computer equipment is responsible for the 
physical existence of this book, deserves special thanks for providing pleasant 
and fruitful working conditions. 

This book was typeset in I~'IEX using several different kinds of computers 
and a large number of standard macro packages. It depends, thus, on the 
work of many people who have given of their talents to the community of 
'lEX users. I thank you all. 

Finally, I would also like to thank Cesar Polcino, of the Universidade de 
Sao Paulo, who first put a book on p-adic numbers in my hands, and Noriko 
Yui, of Queen's University, who insisted that I develop the original notes into 
this book; the project would not have been undertaken without them. 

Note on the second edition: I am grateful to Springer-Verlag for giving 
me the opportunity to revise the book for this new printing. The largest 
changes happened in chapter four. I'd like to thank the various people who 
made comments and suggestions, including Silvio Levy, Alain Robert, and 
especially Keith Conrad. 
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Note on the second printing of the second edition: The need for a 
new printing has given me the opportunity to correct several typos, update 
references, and make a few small changes in the text. 

Note on the third printing of the second edition: The main change 
for this new printing was to correct the numbering of the solutions to the 
problems, which was incorrect in the previous printing. I apologize to those 
who were inconvenienced by that mistake. Other than that, I have only made 
a few minor changes. 

I'd like to thank the many people who found typos, made suggestions and 
comments, and generally gave me useful feedback. You are all encouraged to 
keep at it! 

1:L JtoLEL-t:E, n:ayr()( ELe; 06~()(v SEDU n:OLEL-t:E 



1 Aperitif 

The idea of considering new ways to measure the "distance" between two 
rational numbers, and then of considering the corresponding completions, 
did not arise merely from some desire to generalize, but rather from several 
concrete situations involving problems from algebra and number theory. The 
new "metrics" on Q will be each connected to a certain prime, and they will 
"codify" a great deal of arithmetic information related to that prime. The 
goal of this first chapter is to offer an informal introduction to these ideas. 
Thus, we proceed without worrying too much about mathematical rigorl 
or precision, but rather emphasizing the ideas that are behind what we are 
trying to accomplish. Then, in the next chapter, we will begin to develop the 
theory in a more formal way. 

1.1 Hensel's Analogy 

The p-adic numbers were first introduced by the German mathematician 
K. Hensel (though they are foreshadowed in the work of his predecessor 
E. Kummer). It seems that Hensel's main motivation was the analogy be
tween the ring of integers Z, together with its field of fractions Q, and the 
ring qX] of polynomials with complex coefficients, together with its field of 
fractions qX). To be specific, an element of f(X) E qX) is a "rational 
function," i.e., a quotient of two polynomials: 

P(X) 
f(X) = Q(X)' 

with P(X), Q(X) E qXJ, Q(X) -I- 0; similarly, any rational number x E Q 
is a quotient of two integers: 

a 
X= b' 

with a, b E Z, b -I- O. Furthermore, the properties of the two rings are quite 
similar: both Z and qX] are rings where there is unique factorization: any 
integer can be expressed uniquely as ±1 times a product of primes, and any 
polynomial can be expressed uniquely as 

P(X) = a(X - o:d(X - 0:2) ... (X - O:n), 

lwhich always runs the risk of becoming mathematical rigor mortis . .. 
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where a and aI, a2, ... an are complex numbers. This gives us the main point 
of the analogy Hensel explored: The primes p E Z are analogous to the linear 
polynomials X - a E qXl 

So far, we have nothing that is really notable, but Hensel noticed that the 
analogy, as it stands, goes a little deeper. Suppose we are given a polynomial 
P(X) and a particular a E C. Then it is possible (for example, using a Taylor 
expansion) to write the polynomial in the form 

P(X) = ao + al(X - a) + a2(X - a)2 + ... + an(X - a)n 
n 

= Lai(X - a)i 
i=O 

with ai E C. Now this also works naturally for integers (let's stick to positive 
integers for now): given a positive integer m and a prime2 p, we can write it 
"in base p," that is, in the form 

n 

m = ao + alP + a2p2 + ... + anpn = L aipi 
i=O 

with ai E Z and 0 ::; ai ::; P - 1. 
The reason such expansions are interesting is that they give "local" infor

mation: the expansion in powers of (X - a) will show, for example, if P(X) 
vanishes at a, and to what order. Similarly, the expansion "in base p" will 
show if m is divisible by p, and to what order. For example, expanding 72 in 
base 3 gives 

72 = 0 + 0 x 3 + 2 X 32 + 2 X 33 , 

which shows at once that 72 is divisible by 32 . 

Now, for polynomials and their quotients, one can in fact push this much 
further. Taking f(X) E C(X) and a E C, there is always an expansion 

f(X) = ~~~~ = ano(X - a) no + ano+l(X - a)no+l + ... 

= L ai(X - a)i 
i;:O:no 

This is just the Laurent expansion from complex analysis, but in our case it 
can be very easily obtained by simply doing long division with the expansions 
of P(X) and of Q(X). Notice that it is a much more complicated object than 
the preceding expansion: 

• We can have no < 0, that is, the expansion can begin with a negative 
exponent; this would signal that a is a root of Q(X) and not of P(X) 
(more precisely, that its multiplicity as a root of Q(X) is bigger). In the 
language of analysis, we would say that f(X) has a pole at a, of order 
-no· 

2Remember that in the analogy choosing (X - a) corresponds to choosing a prime. 
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• The expansion will usually not be finite. In fact, it will only be finite if 
when we write f(X) = P(X)/Q(X) in lowest terms then Q(X) happens 
to be a power of (X - a) (can you prove that?). In other words, this is 
usually an infinite series, and it can be shown that the series for f(>.) will 
converge whenever>' is close enough (but not equal to) a. However, since 
we want to focus on the algebraic structure here, we will treat the series 
as a formal object: it is just there, and we do not care about convergence. 

Here's an example. Take the rational function 

X 
f(X) = X-I' 

and let's look at the expansions for different a. (This is a calculus exercise.) 
If a = 0, we get 

X 234 -X =-X-X -X -X - ... 
-1 

which shows that f(O) = 0 with multiplicity one. For a = 1, we get 

~ = 1 + X-I = (X _1)-1 + 1 
X-I X-I 

which highlights the pole of order one at a = 1 (and also gives an example 
of an expansion that is finite). Finally, if we take, say, a = 2, where there is 
neither pole nor zero, we get 

X 2 3 -X = 2 - (X - 2) + (X - 2) - (X - 2) + ... 
-1 

Problem 1 Refresh your calculus skills by checking these three equalities. Can you 
find the region of convergence? (Hint: all you need to remember is the geometric 
series.) 

Problem 2 Suppose f(X) = P(X)/Q(X) is in lowest terms, so that P(X) and 
Q(X) have no common zeros. Show that the expansion of f(X) in powers of (X - a) 
is finite if and only if Q(X) = (X - a)m for some m ;::: O. 

The punchline is that any rational function can be expanded into a series 
of this kind in terms of each of the "primes" (X -a). (The quotes aren't really 
necessary, since the ideals generated by the elements of the form (X - a) are 
exactly the prime ideals of the ring qX], so that (X - a) is a rightful bearer 
of the title of "prime." But all that comes later.) On the other hand, not 
all such series come from rational functions. In fact, we have already met 
examples in our calculus courses: the series for sin(X), say, or the series for 
eX, which cannot be expansions of any rational function (calculus exercise: 
why not?). 



10 1 Aperitif 

Now, from an algebraic point of view, here's how to read the situation. 
We have two fields: the field C(X) of all rational functions, and another field 
which consists of all Laurent series in (X - a). (The next exercise asks you 
to check that it is indeed a field.) Let's denote the second by C«(X - a)). 
Then the function 

f(X) f---* expansion around (X - a) 

defines an inclusion of fields 

C(X) '--4 C«(X - a)). 

There are, of course, infinitely many of these (one for each a), and each one 
contains "local" information about how rational functions behave near a. 

Problem 3 Let C((X - a)) be the set of all finite-tailed Laurent series (with complex 
coefficients) in (X - a) 

f(X) = L ai(X - a)i. 
i~no 

Define the sum and product of two elements of C((X - a)) in the "obvious" way, and 
show that the resulting object is a field. Show that one may in fact take the coefficients 
to be in any field, with the same result. 

Hensel's idea was to extend the analogy between Z and qX] to include 
the construction of such expansions. Recall that the analogue of choosing a 
is choosing a prime number p. As we have already seen, we already know the 
expansion for a positive integer m: it is just the "base p" representation of 
m: 

m = ao + alP + a2p2 + ... + anpn, 

with ai E Z, 0 :::; ai :::; P - 1. As in the case of polynomials, this is a finite 
expression3 . 

To pass from positive integers to positive rationals, we simply do exactly 
as in the other case, that is, we expand both numerator and denominator in 
powers of p, and then divide formally. The only thing one has to be careful 
with is that one may have to "carry." The sum of two of our ai, for example, 
may be larger than p, and one has to do the obvious thing. It's probably 
easier to go straight to an example. 

Let's take p = 3, and consider the rational number 24/17. Then we have 

a = 24 = 0 + 2 x 3 + 2 X 32 = 2p + 2p2 

and 
b = 17 = 2 + 2 x 3 + 1 X 32 = 2 + 2p + p2. 

3The condition 0 ::; ai ::; p - 1 may seem to break the analogy with the complex case. 
But not so! The point is that the quotient of qX] by the ideal generated by (X - a) is 
isomorphic to IC, and the constants in IC[X] give a "canonical" choice of coset representa
tives. Similarly, the numbers between 0 and p - 1 are a choice of coset representatives for 
the quotient of Z by the ideal generated by p. 
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(Though of course p = 3, it's probably less confusing to write p, because one 
is less tempted to "add it all up." The point is to operate formally with our 
expansions. ) 

Then the expansion of alb = 24/17 is 

a 24 
-
b 17 

2p + 2p2 3 7 8 9 
-----''------=------=- = P + P + 2p5 + P + P + 2p + ... 
2 + 2p+p2 

To check that this is correct, all we need to do is to multiply it by (the 
expansion of) 17, remembering that p = 3: 

since p = 3, we get p3 + 2p3 = 3p3 = p4, so 

= 2p+ 2p2 

so that the higher powers of p disappear "to the right," leaving us with 
2p + 2p2 = 24! (The reader will probably feel something has been shoved 
under the rug, and in fact there is something to prove here. But the point is 
that, at least formally, it works.) 
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Provided that one can treat the whole process formally, it is easy to check 
that this always works, and that the resulting series reflects the properties of 
the rational number x = alb as regards the prime number p (we will get into 
the habit of saying "locally at p" or even "near p," to emphasize the analogy). 
Thus, for each prime p, we can write any (positive, for now) rational number 
alb in the form 

a ""' n X = b = L.J anP , 
n~no 

and, for example, we have no ~ 0 if and only if p f b, and no > 0 if and only if 
p f b and pia (assuming alb is in lowest terms). In fact, the number no (which 
is something like the order of a zero or pole) reflects the "multiplicity" of p 
in alb; it is characterized by the equation 

It remains to see how to get the negative rational numbers, but since our 
power series in p can clearly (see Problem 5) be multiplied, it is enough to 
get an expansion for -1. Keeping in mind that we are working formally, and 
with a little imagination, that is not too hard to do. We find, for any p, that 

-1 = (p - 1) + (p - l)p + (p - 1)p2 + (p - 1)p3 + ... , 

since, if we add 1, we get 

1 + (p - 1) +(p - l)p + (p - 1)p2 + (p _1)p3 + ... = 
'---v--' 

= o. 

The conclusion is that, at least in a formal sense, every rational number x 
can be written as a "finite-tailed Laurent series in powers of p" 

_ no + no+l + X - anop a no+1P ... 

("finite-tailed" refers, of course, to the fact that the expansion is finite to the 
left; it is usually infinite to the right). We will call this the p-adic expansion 
of X; remember that if X is a positive integer, it is just its expansion "in base 
p." 
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It is not too hard to show that the set of all finite-tailed Laurent series in 
powers of p (Le., of all p-adic expansions) is a field (Problem 5 again), just 
as C((X - a)) is a field. We will denote this field by Qp, and call it the field 
of p-adic numbers. As. before, we can describe much of what we have done 
by saying that the function 

X t---+ p-adic expansion of x 

gives an inclusion of fields 
Q,---+Qp. 

(We have not yet shown that Qp is strictly bigger than Q; the next section 
will show that this is true.) 

The definition of a p-adic number as a formal object (a finite-tailed Lau
rent expansion in powers of p) is of course rather unsatisfactory according to 
the tastes of today. We will remedy this in Chapter 3, where we will show 
how to construct the field Qp as an analogue of the field of real numbers. For 
now, note only that whatever the "real" definition is, it must allow our series 
to converge, so that powers pn must get smaller as n grows. This is pretty 
strange, so let's give ourselves time to get used to the idea. The problems 
in this section are intended to help the reader feel a little more comfortable 
with p-adic expansions. 

ProbleIll 4 Consider a p-adic number 

x = ao + alp + a2p2 + a3p3 + .... 

What is -x? (This means: what is its p-adic expansion?) 

ProbleIll 5 Show that Qp is indeed a field. (You will have to begin by making explicit 
what the operations are, and this is a bit tricky because of "carrying." For example, 
the coefficient of a given power of p in the sum of two expansions depends on the 
coefficients of all the lower powers in the summands; however, this is still a finite rule.) 
Then show that the map Q ---t Qp given by sending each rational number to its 
expansion is a homomorphism. 

ProbleIll 6 By analogy with the real numbers, it's natural to guess that every ra
tional number will have a periodic (or eventually periodic) p-adic expansion, and that 
conversely any such expansion represents a rational number. Show that this is in fact 
correct. (Just follow the proof for real numbers.) 

Problem 7 When one deals with real numbers, one uses the notation 3.14159 ... to 
refer to the infinite series 

1 4 1 5 9 
3 + 10 + 102 + 103 + 104 + 105 + ... 

Devise a similar notation for p-adic numbers, and explain how to sum and multiply 
numbers expressed in your notation. Using your notation, re-do some of the examples 
we gave above. 
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Problem 8 (Some Abstract Algebra required!) Another point at which our anal
ogy seems to break down is the fact that rational functions f(X) E C(X) are really 
functions: one can really compute their value at a complex number a. This problem 
explains a highfalutin' way of interpreting rational numbers as functions too. 

i) First of all, show that we can identify the set of complex numbers a with the set 
of maximal ideals in qX] via the correspondence a <-+ (X - a). 

ii) Fix a complex number a. Show that the map f f-> f(a) defines a homomorphism 
from the ring qX] to C, whose kernel is exactly the ideal (X - a). 

iii) Now let f(X) be a rational function. Show that the map f f-> f(a) still makes 
sense provided the denominator of f is not divisible by X-a. If the denominator 
is divisible by (X - a)n but not by (X - a)n+l, explain why this means that f 
has a pole of order n at a. 

iv) Now take x = alb E Q, and choose a prime p E Z. If p does not divide b, define 
the value of x at p to be alb (mod p), which means ab' (mod p), where b' is 
an integer satisfying bb' == 1 (mod p). We think of this value as an element of 
IFp, the field with p elements. If p does divide b, we say that x has a pole at 
p. Explain how to define the order of the pole. This interprets the elements of 
Q as a sort of "function" on the primes p E Z. It is a bit weird, because this 
"function" doesn't have a "range:" the value at each p belongs to a different 
field IFp. 

v) Discuss whether this way of thinking of rational numbers as functions is reason
able. Does it make the analogy any tighter? 

1.2 Solving Congruences Modulo pn 

The "p-adic numbers" we have just constructed are closely related to the 
problem of solving congruences modulo powers of p. We will look at some 
examples of this. 

Let's start with the easiest possible case, an equation which has solutions 
in Q, such as 

We want to consider it modulo pn for every n, i.e., to solve the congruences 

Now, of course, our equation has solutions already in the integers: X = 
±5. This automatically gives a solution of the congruence for every n; just 
put X == ±5 (mod pn) for every n. 

Problem 9 Check that these are the only solutions, up to congruence, of X2 == 25 
(mod pn), at least when p #- 2, 5. What happens in these special cases? 
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Let's try to understand these solutions a little better from the p-adic point 
of view. To make our life easier, we take p = 3 Once again. We begin by re
writing our solutions using residue class representatives between 0 and 3n - 1 
for the solutions modulo 3n . The first solution, X = 5, gives: 

X == 2 (mod 3) 
X == 5 = 2 + 3 (mod 9) 
X == 5 = 2 + 3 (mod 27) 
etc. 

which never changes any more, and therefore just gives the 3-adic expansion 
of this solution: 

X = 5 = 2 + 1 x 3. 

For X = -5, the results are a little more interesting; the representatives are 

X == -5 == 1 (mod 3) 
X == -5 == 4 = 1 + 3 (mod 9) 
X == -5 == 22 = 1 + 3 + 2 x 9 (mod 27) 
X == -5 == 76 = 1 + 3 + 2 x 9 + 2 x 27 (mod 81) 
etc. 

Again, continuing this gives the 3-adic expansion of the solution, which is a 
bit more interesting because it is infinite: 

X = -5 = 1 + 1 x 3 + 2 X 32 + 2 X 33 + 2 X 34 + ... 

(Check this against your answer in Problem 4.) 
Notice that the two systems of solutions are "coherent," in the sense that 

when we look at, say, X = 76 (which is the solution modulo 34 ) and reduce 
it modulo 33 , we get X = 22 (which is the solution modulo 33 ). Let's give 
this a formal definition: 

Definition 1.2.1 Let p be a prime. We say a sequence of integers an such 
that 0 :s: an :s: pn - 1 is coherent if, for every n 2: 1, we have 

If we need to emphasize the choice of prime p, we will say the sequence is 
p-adically coherent. 

We can picture our two coherent sequences of solutions as branches in 
a tree (see figure 1.1). Of course this is all rather painfully obvious in the 
case we are considering, since the sequences of solutions are coherent simply 
because they "are" solutions in Z (76 is congruent to 22 just because both 
are congruent to -5). The only real bit of information we have obtained 
is the connection between expressing the roots as a coherent sequence and 
obtaining their p-adic expansions. 
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5 

5 

/ 

c: 
~4 
~ 

22 

76 

Figure 1.1: Solutions of X 2 === 25 (mod 3n ) 

Problem 10 Before we go on to something more interesting, do a couple of similar 
examples on your own, say with X2 = 49 and p = 5, and X 3 = 27 and p = 2. 

Problem 11 Things already get slightly more interesting if we take p = 2 and the 
equation X 2 = 81. In this case, the "tree" of solutions modulo 2n is much more 
complex: there are two infinite branches that correspond to the solutions X = ±9, but 
there are also lots of finite branches (solutions modulo 2n that do not "lift" to solutions 
modulo 2n+l). We will later consider what is special about this situation. 

Things become much more interesting if we follow the same process with 
an equation that does not have rational roots. For example, take the system 
of congruences 

n = 1, 2, 3, ... 

For n = 1, the solutions are X === 3 (mod 7) and X === 4 === -3 (mod 7). 
To find the solutions for n = 2, note that their reductions modulo 7 must be 
solutions for n = 1. Hence we set X = 3 + 7k or X = 4 + 7k and solve for k: 

(3 + 7k)2 === 2 (mod 49) 

9 + 42k === 2 (mod 49) 

(notice that the term involving (7 k ) 2 is congruent to zero) 

7 + 42k === 0 

1 + 6k === 0 

k===l 

(mod 49) 

(mod 7) 

(mod 7) 
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2166 

/ 
108 

/ 
10 

/ 
(3 

4 

~39 
~ 

235 

~ 
235 

Figure 1.2: Solutions of X2 = 2 (mod 7n) 

which, since X = 3 + 7k, gives the solution X == 10(mod 49). Using X = 
4 + 7k gives the other solution X == 39 == -10 (mod 49). 

Problem 12 Prove that for each n there can be at most two solutions. (All you need 
is p ~ 2.) 

Problem 13 Show that the process above can be continued indefinitely, that is, that 
given a solution an of the congruence X2 == 2(mod 7n ), there always exists a unique 
solution a n+1 of x 2 == 2 (mod 7n+l) satisfying CYn+l == an (mod r). Find a few more 
terms in each of the sequences of solutions above. 

Again, the solutions can be represented as branches in a tree (see fig
ure 1.2). This time, however, we can't predict a priori what the numbers 
that appear will be; instead, all we can do is convince ourselves that the 
process will continue as long as we want it to. The fact that one can con
tinue finding roots indefinitely shows that there are two coherent sequences 
of solutions: 

Xl = (3, 10, 108, 2166, ... ) 

and 

X2 = (4, 39, 235, 235 ... ) = (-3, -10, -108, -2166 ... ) = -Xl. 

Just as before, we can expand each number in each sequence 7-adically. The 
fact that the sequence is coherent means that the expansion of each root is 
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the truncation of the expansion of the following root, so that, for example, 

3 3 
10 3 + 1 x 7 

108 3 + 1 x 7 + 2 x 49 

This gives us two 7-adic numbers: 

Xl = 3 + 1 x 7 + 2 x 49 + 6 x 343 + ... 
and 

X2 = 4 + 5 x 7 + 4 x 49 + 0 x 343 + ... = -Xl' 

It probably bears repeating: we are not claiming that we can predict the 
pattern here. All we know is that we can continue the pattern for as long 
as necessary, if we have enough time and patience. It's just like finding the 
decimal expansion of the square root of two: we can get as close as we like, 
and we can prove that, though we can't predict what the expansion will 
actually be like. 

In any case, we do get two 7-adic numbers, and they are indeed roots of 
the equation X 2 = 2 in Q7, in the usual sense: 

ProbleIn 14 Show that the 7-adic number Xl obtained as above satisfies xl = 2 in 
Q7. Conclude that the field Q7 is strictly bigger than Q. 

The tie between solving sequences of congruences modulo higher and 
higher powers of p and solving the corresponding equation in Qp is quite 
close, as the problems below try to emphasize. It is also one of the more 
important reasons for using p-adic methods in number theory. 

ProbleIn 15 Check that X2 = 2 has no solutions in the field Q5. (Begin by expressing 
the putative solution as a 5-adic expansion. Show that it must be of the form ao + 
a 1 5 + a 2 52 + .... and conclude that ao must satisfy a congruence modulo 5. Finally. 
check that the congruence you obtained has no solutions modulo 5.) Notice that this 
shows (in a very roundabout way) that 2 has no square root in Q. since any square 
root in Q would be a square root in any ofthe Qp (remember that there is an inclusion 
Q '---+ Qp). hence in particular in Q5. 

ProbleIn 16 Check that X2 + 1 = 0 has a solution in Q5. but not in Q7. 

ProbleIn 17 Show that a p-adic number 

x = ao + alp + a2p2 + a3p3 + ... 
is a solution in Qp of an equation X2 = m if and only if the sequence 

(ao, ao + alP, ao + alp + a2p2, .. . ) 

is a coherent sequence of solutions of the congruences X2 == m(mod pn). (Hint: 
compute X2 up to a certain power of P. and compare it with m to read off a congruence 
modulo that power of p.) 
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We have already mentioned that there is some analogy between p-adic 
numbers and real numbers. The next problem gives an example of this. 
Over JR, there is a simple condition that determines whether the equation 
X 2 = m has a solution (just check the sign of m). In Qp, the condition is 
also simple: 

ProbleIn 18 Let m be any integer, and suppose that the congruence X2 == m 
(mod p) has a solution; show that if p =f 2 and p f m it is always possible to "ex
tend" this solution to a full coherent sequence of solutions of X 2 == m (mod pn). Use 
this to find a necessary and sufficient condition for the equation X 2 = m to have a 
root in Qp for p =f 2. What is special about p = 2? 

ProbleIn 19 Show that for every p, the inclusion Q '-> Qp is strict, that is, some 
p-adic numbers are not (expansions of) rational numbers. (Hint: find an equation that 
has a root in Qp but not in Q; the root will be a p-adic number that is not rational. 
The basic work has all been done; just be careful with p = 2.) 

ProbleIn 20 In the same spirit as the previous problem, show that Qp is never al
gebraically closed; more precisely, for each p one can find an algebraic equation with 
rational coefficients that has no roots in Qp. 

1.3 Other Examples 

Working with p-adic numbers is useful in all sorts of contexts. We round off 
this chapter by giving two rather whimsical examples. 

Consider the equation X = 1 + 3X. This is of course easy to solve, but 
let's try something strange and look at it as a fixed-point problem, i.e, as 
the problem of finding a solution for f(x) = x for some function f(x). Such 
problems are often solved by iteration, plugging in an arbitrary initial value, 
then computing f(x) over and over in the hope that we will get closer and 
closer to a fixed point. To try that in our case, we take Xo = 1 and iterate, 
so that Xn+l = 1 + 3xn . Here's what we get: 

Xo 1 
Xl 1 + 3xo = 1 + 3 
X2 1 + 3Xl = 1 + 3 + 3 2 

xn 1 + 3 + 32 + ... + 3n . 

In JR, this is a divergent sequence, and we were all taught in calculus classes 
never to have any dealings with them. On the other hand, it is the sequence 
of partial sums of a geometric series, and we all know that 

23 1 l+a+a +a + ... =--
I-a 

(Well, we know it for lal < 1, but what the heck. .. ) Plugging in blindly gives 
x = 1/(1 - 3) = -1/2, which is (surprise!) the correct answer. 
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This dubious playing around with divergent sequences is clearly illegal 
in calculus class, but it works. Here's one way to understand why. While 
the sequence is certainly divergent in JR, there is nothing to keep us from 
looking at the sequence in Ql3 (the elements in the sequence are in Ql, which 
is contained in both JR and Q(3). Now, in Ql3, the sequence is obviously 
convergent, to the 3-adic number 

1 + 3 + 32 + ... + 3n + .... 

One then easily checks (by the same argument used over JR!) that this is 
equal to -1/2. 

Of course it is silly to solve a linear equation in such a roundabout way, 
but the remarkable fact here is that an argument that was either dubious or 
outright illegal at first sight turns out to work perfectly well in the p-adic 
context. The series we used is divergent only if we insist of thinking of it as 
a series of real numbers. Once we put it in the "right" context, it becomes 
quite nice. In fact, we will see in the next chapter that there is an absolute 
value in Ql3, and that with respect to the notion of size determined by that 
absolute value our series is convergent. 

The point, then, is that introducing the p-adic fields broadens our world 
in such a way as to allow arguments that were previously impossible. This 
toy example points the way to many analogous situations where considering 
the p-adic numbers simplifies matters tremendously. 

ProbleIll 21 Show that, for any prime p, the formula 

is true in Qp. 

2 3 1 
l+p+p +p + ... =-

I-p 

The next example is perhaps even more interesting. It shows that sometimes 
introducing p-adic ideas allows a more conceptual proof of a fact that seems 
obscure (and hard to prove) otherwise. This example is a bit more advanced, 
and we will take for granted things that we will prove only later, but the 
reader should be able to follow it. We will work with p = 2, that is, in the 
field Ql2 of 2-adic numbers. 

Consider the usual MacLaurin series for the logarithm of 1 + X: 

X2 X3 X4 
log(l + X) = X - - + - - - + .... 

234 

Since powers of 2 are "small" in Ql2, it turns out that we can plug in X = -2 
to compute the logarithm of -1: 

( 22 23 24 ) 
log( -1) = log(l - 2) = - 2 + - + - + - + ... 

2 3 4 
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(This is of course wildly divergent in R, but it turns out to be convergent in 
1012; this is not completely obvious because of the denominators, but it does 
work-see ahead.) Now, if the series converges, it must converge to zero, by 
the usual properties of the logarithm: 

2Iog(-1) = log(l) = o. 

This means that the partial sums 

must get closer and closer to zero as n grows. Remember that what this 
means is that the terms in the 2-adic expansion "disappear to the right," 
that is, that the partial sums, written in base 2, begin with longer and longer 
stretches of zeros. Here's the upshot: 

Fact 1.3.1 For each integer M > 0 there exists an n such that the partial 
sum 

is divisible by 2M . 

Problem 22 Can you give a direct proof of that fact? 

What this example points out is that using p-adic methods, and in par
ticular the methods of the calculus in the p-adic context, we can often prove 
facts about divisibility by powers of p which are otherwise quite hard to un
derstand. The proofs are often, as in this case, "cleaner" than any direct 
proof would be, and therefore easier to understand. We will look at many 
more examples of this before we are done. 
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The goal of this chapter is to begin to lay a solid foundation for the theory 
we described informally in Chapter One. The main idea will be to introduce 
a different absolute value function on the field of rational numbers. This will 
give us a different way to measure distances, hence a different calculus. Once 
we have that, we will use it (in Chapter 3) to construct the p-adic numbers. 

To get the p-adic numbers, we need to start with the field Q of rational 
numbers. However, rather than deal exclusively with Q, we will devote this 
chapter to studying absolute values on fields in general. Of course, the main 
example we will have in mind will be Q, but the general theory is easy enough 
that it would be a waste to specialize to rational numbers too soon. (Later, 
when the generality would cost us some effort, we will speedily go back to 
the special case of the rationals.) 

So, for this chapter, Ik will be an arbitrary field, and we will be interested 
in constructing an abstract theory of absolute values on Ik. We will do this 
by starting from the basic properties of the absolute values we already know 
and love, and then looking for other functions with similar properties. 

One thing to notice from the start is that we will want to think of our new 
absolute values as giving alternative ways to measure the "size" of things. 
This can feel rather strange at first, so it's wise to keep many concrete ex
amples in mind as we go. 

2.1 Absolute Values on a Field 

Let Ik be a field and let R.+ = {x E R. : x 2: O} be the set of all non-negative 
real numbers. We begin by defining an absolute value on Ik and exploring 
the possibilities implicit in the definition. The definition just tries to capture 
what seem to be the most important properties of the everyday absolute 
value. 

Definition 2.1.1 An absolute value on Ik is a function 

that satisfies the following conditions: 

i) Ixl = 0 if and only if x = 0 

ii) Ixyl = Ixllyl for all x, y E Ik 
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iii) Ix + yl :s; Ixl + Iyl for all x, y E Ik. 

We will sayan absolute value on Ik is non-archimedean if it satisfies the 
additional condition: 

iv) Ix + yl :s; max{lxl, Iyl} for all x, y E Ik; 

otherwise, we will say that the absolute value is archimedean. 

Note that condition (iv) implies condition (iii), since max{lxl, Iyl} is cer
tainly smaller than the sum Ixl + IYI. We will later discuss in more detail 
why non-archimedean absolute values are important, and where their name 
comes from; for now, let's just mention that they are quite common. 

EXAMPLES: 

1. The most obvious example, of course, is our model: take Ik = Q, and take 
the usual absolute value II defined by 

Ixl = {x 
-x 

if x::::: 0 

if x < 0 

A more sophisticated way of describing this absolute value is to say that it is 
actually the absolute value on the field R. of real numbers, applied to Q via 
the inclusion Q '---+ R It is easy to see that this absolute value is archimedean. 
(Take x = y = 1 to see that condition (iv) does not hold.) For reasons that 
we will discuss later, this absolute value is usually called the infinite absolute 
value on Q, or the absolute value at infinity, and is written as 1100' 
2. The most boring example is the one we get by setting Ixl = 1 if x i= 0 and 
101 = O. This works for any field Ik, and defines a non-archimedean absolute 
value. It is known, for obvious reasons, as the trivial absolute value. It will 
often have to be excluded in the theorems to follow. 

There are many simple properties that one can deduce quickly from the 
conditions above. We will try to develop them systematically in the next 
section. For now, let's try to be as concrete as we can. First of all, it's 
worth pointing out that for the special case of finite fields, the whole theory 
is trivial: 

Problem 23 Let Ik be a finite field. Show that the only absolute value on Ik is the 
trivial absolute value. 

We now go on to introduce the example that we will focus on for most 
of this book. Take Ik = Q, and choose any prime p E Z. Any integer n E Z 
can be written as n = pVn', with p f n' , and this representation is unique. 
Since v is determined by p and n, it make sense to define a function vp by 
setting vp(n) = v, so that vp(n) is just the multiplicity of p as a divisor of n. 
Formally: 
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Definition 2.1.2 Fix a prime number p E Z. The p-adic valuation on Z is 
the function 

vp : Z - {O} -------. lR 

defined as follows: for each integer nEZ, n f. 0, let vp(n) be the unique 
positive integer satisfying 

with p t n'. 

We extend vp to the field of rational numbers as follows: if x = alb E IQx, 
then 

It is often convenient to set vp(O) = +00, with the usual conventions on 
how to handle this symbol. The reasoning here is that we can certainly divide 
o by p, and the answer is 0, which we can divide by p, and the answer is 0, 
which we can divide by p ... 

Problem 24 Check that for any x E Q. the value of vp(x) does not depend on 
its representation as a quotient of two integers. In other words. if alb = c/ d. then 
vp(a) - vp(b) = vp(c) - vp(d). 

It is in fact easy to see that the p-adic valuation of any x E IQx is deter
mined by the formula 

p tab. 

Problem 25 Compute a few examples. to get a feel for the thing. For example. 
determine v5(400). v7(902). v2(621). v3(123/48). v5(180/3). 

The basic properties of the p-adic valuation vp are the following: 

Lemma 2.1.3 For all x and y E IQ, we have 

i) vp(xy) = vp(x) + vp(y) 

ii) vp(x + y) ;::: min{vp(x),vp(Y)}, 

with the obvious conventions with respect to vp(O) = +00. 

Problem 26 Prove Lemma 2.1.3. (Hint: the first property is easy to see by writing 
out factorizations of x and y; the second comes from the fact that common powers of 
p can be factored out from a sum.) 

Now here comes the really tricky thing: if we compare the two properties 
in this lemma with conditions (ii) and (iv) in the definition of absolute values, 
we see that they are very similar, except that the product in the first has been 
turned into a sum (as when taking a logarithm) and that the inequality in the 
second has been reversed. We can "unreverse" the inequality by changing the 
sign, and then turn the sum into a product by putting it into an exponent. 
This suggests the following, which is the crucial definition: 
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Definition 2.1.4 For any x E Q, we define the p-adic absolute value of x 
by 

if x I- 0, and we set 10lp = O. 

Notice that the definition of 10lp matches our convention that vp(O) = +00 
if we interpret p-oo in the only reasonable way. To see that our definition 
really does give an absolute value, we need to check that our requirements 
have been satisfied. 

Proposition 2.1.5 The function I Ip is a non-archimedean absolute value 
on Q. 

PROOF: Everything follows at once from Lemma 2.1.3. o 
To get a general impression about what the p-adic absolute value is doing, 

notice that when a number n is very divisible by our prime p the valuation 
vp(n) will be large, and then the absolute value Inlp will be small. (Look at 
that minus sign in the exponent!) So the p-adic absolute value gives, in a 
strange sort of way, a measure of how divisible by p a number is. 

ProbleIn 27 More practice: take Ik = Q. p = 7. and let I I = I 17 be the 7-adic 
absolute value. Compute 1351. 156/121. 11775531. 13/6861. 

The connection between a non-archimedean absolute value and a func
tion such as in Lemma 2.1.3 (called a valuation, or sometimes an additive 
valuation) is quite general. In fact, one can develop the theory taking either 
object (valuation or absolute value) as the primitive one. In this book, we 
will stick to absolute values, because they are closer to our intuition, but it 
is often convenient to go the other way. 

ProbleIn 28 (Some abstract algebra required) Let A be an integral domain. and let 
K be its field offractions. Let v : A - {O} ---+ R be a function satisfying the conditions 
of Lemma 2.1.3. i.e .. a valuation on A. Extend v to K by setting v( a/b) = v( a) - v(b). 
Show that the function Ilv : K ---+ R+ defined by 

for x 1= 0 

and 101 = 0 is a non-archimedean absolute value on K. Conversely. show that if I I is 
a non-archimedean absolute value. then -log II is a valuation. 

ProbleIn 29 Let v : Ik x ----7 R be a valuation. Show that the image of v is an 
additive subgroup of R. This is sometimes called the value group of the valuation v. 
What is the value group of the p-adic valuation? 

Though the p-adic absolute value is certainly the most interesting one 
from the point of view of this book, it's worth pointing out that there are 
other interesting absolute values on other fields. Before we go on to look at 
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them, however, here are two problems to force another look at the p-adic 
absolute value. 

Problem 30 Show that Ipnlp -> 0 when n -> 00, so that high powers of p are small 
with respect to the p-adic absolute value. 

Problem 31 Show that for any c E lR, c > 1, the equation Ixl = c-vp(x) defines a 
non-archimedean absolute value on Q. Make a conjecture about the relation between 
this absolute value and the p-adic absolute value lip. Make a conjecture about why 
we chose c = p for the p-adic absolute value. 

Our final example is intended to show that the theory we are developing 
is indeed quite general, and in fact can be applied, almost without change, 
in all sorts of contexts. The example we want to consider also serves to 
confirm Hensel's intuition on the similarity between Q and fields of rational 
functions. So let F be any field (for example, a finite field, or q, let F[t] 
be the ring of polynomials with coefficients in F, and let F(t) be the field of 
rational functions over F, which is the field of fractions of the form f(t)/g(t) 
where f(t) and g(t) belong to F[t] (and g(t) =1= 0, of course). We will define 
several valuations (and therefore several absolute values) on F(t). The first 
is very specific to this situation, since it depends on the notion of degree 
of a polynomial; by contrast, the others are closely analogous to the p-adic 
absolute value. 

First, for any polynomial f(t) E F[tJ, we set voo(f) = - deg(f(t)), and 
extend this to rational functions as before, by setting voo(O) = +00 and 

Voo (~g~) = Voo (f(t)) - Voo (g(t)) = deg (g(t)) - deg (f(t)). 

It is easy to check that this is a valuation: 

Problem 32 Check that for any f(t), g(t) E F(t) we have voo(f(t)g(t)) = voo(f(t))+ 
voo(g(t)) and also voo(f(t) + g(t)) ;:::: min{ voo(f(t)), voo(g(t))}. (Is it enough to check 
for polynomials? Why?) 

This gives us a non-archimedean absolute value just as before: 

for any f(t) E F(t). (As we hinted in Problem 31, any real number greater 
than one will do for the basis of the exponential; choosing e just fixes one; if 
F is a finite field, a nicer choice might be the number of elements in F.) 

Problem 33 When is a rational function "small" with respect to I loo? Is a polynomial 
ever small? 
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One can get other valuations on F(t) by imitating the definition of the 
p-adic valuation, since F[t] is a unique factorization domain. Just choose an 
irreducible polynomial p = p(t) and proceed as before: define a valuation by 
counting the multiplicity of p(t) as a factor. 

Problem 34 Do it! For an irreducible polynomial pet) E F[t], define the p(t)-adic 
valuation and absolute value on F(t). 

Problem 35 Since F is a subfield of F(t), any absolute value on F(t) also gives an 
absolute value on F. For the examples we have just constructed, describe the absolute 
value on F obtained in this way. 

Problem 36 Suppose F = IC. What are the irreducible polynomials in this case? Are 
we getting close to realizing Hensel's analogy? 

Problem 37 All of the absolute values we have constructed on F(t) are non-arch i
medean. Try to construct an archimedean absolute value on some F(t). (First of all, 
this mayor may not be possible, depending on F. If you're very sneaky, it can be done 
for F = Q. Can it be done in such a way that the induced absolute value on F is the 
trivial one 7) 

Problem 38 The field F(t) contains the subring of polynomials F[t], but it also con
tains the subring F[l/t] of "polynomials in lit." In fact, every element of F(t) can be 
written as a quotient of elements in F[l/t], so this subring serves just as well as F[t] as 
a starting point. Very well, in F[l/t] the "polynomial" lit is clearly irreducible, so we 
can construct, as in Problem 34, a 1/t-adic valuation VI. Check that VI is the same as 
the Voo constructed above. This means that all of the valuations we have constructed 
on F(t) are of the "p(t)-adic" type. 

Problem 39 Let Ik = Q(i) be the field obtained by adjoining i = A to the rational 
numbers, so that any element of Ik can be written as a + bi with a, b E Q. The 
"integers" in Ik are the elements of Z[i] = {a + bi : a, b E Z}. It is not too hard to 
check that this is a unique factorization domain, so that its properties are much like 
those of the usual integersl. The primes of Z[i] are of three kinds: 

i) 1 + i is prime, 

ii) if p E Z is a prime number and p == 3 (mod 4), then p is a prime in Z[i], 

iii) for each prime p E Z which is congruent to 1 modulo 4, there are two primes 
x + yi and x - yi in Z[i] satisfying (x + yi)(x - yi) = x 2 + y2 = p. 

In each case, we can use the prime n: E Z[i] to construct a n:-adic valuation V71" and 
(from it) n:-adic absolute value 1171" on Ik as before: 

lal71" = c-v.,..(a) 

(can you come up with a "good" choice for the constant c7). Check that this works, 
and explore the resulting situation. For example, since Q is contained in Ik, this induces 
an absolute value on Q; describe the induced absolute value. In particular, for a fixed 
n:, can you compute V71"(p) as P ranges through the primes in Z7 

ISee most introductory texts in algebra or number theory, or just take it for granted. 
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There is an extensive theory of how valuations extend (or not) from sub
fields to larger fields, and this theory turns out to be closely connected to 
algebraic number theory. (In fact, many texts on algebraic numbers develop 
the theory in terms of valuations and absolute values rather than in terms 
of ring theory; the best example is probably [Has80].) Some aspects of this 
subject are discussed in Chapter 5. 

Keeping in mind this set of examples, and of course especially the p-adic 
absolute value, let's go on to look at absolute values in general in a more 
careful way. 

2.2 Basic Properties 

In this section, Ik will be an arbitrary field, and I I will be a non-trivial 
absolute value on Ik, which mayor not be archimedean. The first few things 
to prove are some "obvious" facts, which we had better make sure work in a 
general setting. 

Lemma 2.2.1 For any absolute value lion any field Ik, we have: 

i) 111 = 1 

ii) If x E Ik and Ixnl = 1, then Ixl = 1. 

iii) 1- 11 = 1 

ivY For any x E Ik, 1- xl = Ixl· 
v) If Ik is a finite field, then I I is trivial. 

PROOF: The crucial fact is to remember that Ixl is a positive real number. 
Then, to prove the first statement, all one needs to note is that 

since the only non-zero positive real number a for which a 2 = a is a = 1. 
The remaining statements follow in a similar fashion. D 

Problem 40 Prove the remaining statements in the Lemma. 

Our first serious theorem is a necessary and sufficient condition for an ab
solute value to be non-archimedean. We begin by noticing (or remembering) 
that for any field Ik we have a map Z ----? Ik defined by 

nf---t 

1+1+···+1 

------------n 

o 

- (1 + 1 +v'" + 1) 
-n 

ifn> 0 

if n = 0 

ifn < 0 
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For example, if Ik :J Q, this is just the usual inclusion of Z into Q; if Ik is a 
finite field, the image is a subfield of Ik, which will have a prime number of 
elements. 

Theorem 2.2.2 Let A c Ik be the image of Z in Ik. An absolute value I I 
on Ik is non-archimedean if and only if lal :::; 1 for all a E A. In particular, 
an absolute value on Q is non-archimedean if and only if Inl :::; 1 for every 
nE Z. 

PROOF: One part is easy: we have I ± 11 = 1 always; hence, if I I is non
archimedean, we get that 

la ± 11:::; max{lal, I}. 

By induction, if follows that lal :::; 1 for every a E A. 
The converse requires some hocus-pocus: suppose that lal :::; 1 for all 

a E A. We want to prove that for any two elements x, y E Ik, we have 
Ix + yl :::; max{lxl,lyl}· If y = 0, this is obvious. If not, we can divide 
through by Iyl, and we see that this is equivalent to the inequality 

This means that we need only prove the inequality for the case when the 
second summand is 1, and the general fact will follow. In other words, we 
want to prove that for any x E Ik we have 

Ix + 11:::; max{lxl, I}. 

Now let m be any positive integer. Then we have 

Ix + 11 m = I~ (7) xk
l 

:::; ~1(7)llxkl 
Now, since (7:) is an integer, we have I (7:) I :::; 1, so we can continue with 

m m 

k=O k=O 

:::; (m + 1) max{l, Ixlm}. 
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(For the last step, notice that the largest value of Ixl k for k = 0, 1, 2, ... m 
is equal to Ix 1m if Ixl > 1 and is equal to 1 otherwise.) Taking the m-th root 
on both sides gives 

Ix + 11:::::: \1m + 1 max{l, Ix I}· 

Now this strange inequality holds for every positive integer m, no matter how 
large, and we know (from calculus) that 

lim \1m + 1 = l. 
m-+oo 

Therefore, if we let m --t 00 we get 

Ix + 11:::::: max{lxl, I}, 

which is what we wanted to prove. D 

This helps explain the difference between archimedean and non-archime
dean absolute values. It allows us to restate things in the following way. An 
absolute value is archimedean if it has the following property: 

Archimedean Property: Given x, y E Ik, x i= 0, there exists a 
positive integer n such that Inxl > Iyl. 

This property holds for the "usual" absolute value on Q and in the the real 
numbers, and (in a slightly different form) this observation does go back to 
Archimedes. 

It is easy to see that the Archimedean Property is equivalent to the 
assertion that there are arbitrarily "big" integers (translation: that there 
are integers whose absolute values are arbitrarily big). In other words, the 
archimedean property is equivalent to the assertion that 

sup{lnl : n E Z} = +00. 

Put into this context, what our theorem says is that: 

Corollary 2.2.3 An absolute value I I is non-archimedean if and only if 
sup{lnl : n E Z} = 1. 

One can complete the circle by showing that these are the only two possibil
ities. 

Problem 41 Show that if sup{lnl : n E Z} = C < +00, then II is non-archimedean, 
and C = 1. 
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2.3 Topology 

The whole point of an absolute value is that it provides us with a notion of 
"size." In other words, once we have an absolute value, we can use it to mea
sure distances between numbers, that is, to put a metric on our field. Having 
the metric, we can define open and closed sets, and in general investigate 
what is called the topology of our field. 2 

The first step is measuring distances, in the obvious way: 

Definition 2.3.1 Let Ik be a field and II an absolute value on Ik. We define 
the distance d(x, y) between two elements x, y E Ik by 

d(x, y) = Ix - YI· 

The function d(x, y) is called the metric induced by the absolute value. 
The definition of d(x, y) parallels, of course, the usual way we define the 

distance between two real numbers. The first point we need to make is that 
a great many of the notions that we can define using the usual distance on 
IR work just as well for any old distance. 

Problem 42 Show that d(x,y) has the following properties: 

i) for any x, yEll<, d(x, y) ~ 0, and d(x, y) = 0 if and only if x = y 

ii) for any x, yEll<, d(x, y) = d(y, x) 

iii) for any x, y, z E 11<, d(x, z) ~ d(x, y) + d(y, z) 

These are the general defining properties for a metric; the last inequality is 
called the triangle inequality, since it expresses the usual fact that the sum 
of the lengths of two legs of a triangle is bigger than the length of the other 
side. ("A line is the shortest path between two points.") A set on which a 
metric is defined is called a metric space, so we can read the statement of 
this last problem as saying that any field with an absolute value can be made 
into a metric space by defining d( x, y) = Ix - y I. For more on metric spaces 
in general, check practically any book on real analysis (for example, [Rud76]) 
or an introductory text on general topology. 

Problem 43 The point of this problem is to check that the metric d(x, y) (or, equiv
alently, the absolute value it is derived from) relates well to the operations in the field 
Ik: 

i) Fix Xo, Yo E II<. Show that for any c > 0 there exists a 8 > 0 such that, whenever 
d(x, xo) < 8 and d(y, yo) < 8, we have d(x + y, Xo + yo) < c. In other words, 
addition is a continuous function. 

2The reader who has never met topology or metric spaces before should not feel spooked; 
all we are doing is repeating the usual constructions of the calculus, but using our unusual 
absolute values. 
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ii) Fix Xo, yo E lk. Show that for any e > 0 there exists a 8 > 0 such that, 
whenever d(x, xo) < 8 and d(y, Yo) < 8, we have d(xy, xoYo) < e. In other 
words, multiplication is a continuous function. 

iii) Fix Xo E Ik, Xo "I O. Show that for any e > 0 there exists a 8 > 0 such that, 
whenever d(x,xo) < 8, we have x "I 0 and d(l/x,l/xo) < e. In other words, 
taking inverses is a continuous function. 

This shows that the metric d(x, y) makes Ik a topological field. 

The fact that the absolute value is non-archimedean can also be expressed 
in terms of the metric: 

LeInIna 2.3.2 Let I I be an absolute value on a field Ik, and define a metric 
by d(x,y) = Ix - YI· Then I I is non-archimedean if and only if for any 
x, y, z E Ik, we have 

d(x,y) ~ max{d(x,z),d(z,y)}. 

PROOF: To go one way, apply the non-archimedean property to the equation 

(x - y) = (x - z) + (z - y). 

For the converse, take y = -Yl and z = 0 in the inequality satisfied by 
d(·, .). 0 

Problem 44 Give the details of the proof of the lemma. Prove also that the inequality 
in the Lemma implies the triangle inequality from Problem 42. 

This inequality is known as the "ultrametric inequality," and a metric 
for which it is true is sometimes called an "ultrametric." A space with an 
ultrametric is called an "ultrametric space." Such spaces have rather curious 
properties, and we will spend the rest of this section exploring them3 . The 
main point in what follows is that, once we have a way to measure distances, 
we can do geometry. Since our way to measure distances is rather strange, 
the geometry is also rather strange. 

Proposition 2.3.3 Let Ik be a field and let I I be a non-archimedean absolute 
value on 1M::. If x, y E Ik and Ixl =1= Iyl, then 

Ix + yl = max{lxl, Iyl}· 

3Ultrametric spaces sound like the sort of thing only a mathematician would dream 
up. Surprisingly, they have recently turned up in physics (in the theory of "spin glasses"). 
This may be one more example of the "unreasonable effectiveness of mathematics in the 
physical sciences"--see [Wig64]. 
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PROOF: Exchanging x and y if necessary, we may suppose that Ixl > Iyl. 
Then we know that 

Ix + yl ::; Ixl = max{lxl, Iyl}· 

On the other hand, x = (x + y) - y, so that 

Ixl ::; max{lx + yl, Iyl}· 

Since we know that Ixl > Iyl, this inequality can hold only if 

This gives the reverse inequality Ixl ::; Ix + yl, and from it (using our first 
inequality) we can conclude that Ixl = Ix + yl· D 

This has an interesting corollary that captures in a memorable statement 
a property that ends up having a big role later on: 

Corollary 2.3.4 In an ultrametric space, all "triangles" are isosceles. 

y 

z 

x 

PROOF: Let x, y and z be three 
elements of our space (the vertices 
of our "triangle"). The lengths of 
the sides of the "triangle" are the 
three distances 

d(x,y) = Ix - yl 
d(y,z) = Iy - zl 
d(x,z) = Ix - zl 

Now, of course, 

(x - y) + (y - z) = (x - z), 

Figure 2.1: All isosceles! 
so that we can invoke the proposi
tion to show that if Ix-yl =lly-zl, 

then Ix - zl is equal to the bigger of the two. In any case, two of the "sides" 
are equal. D 

This is a rather unintuitive result (and it will have an enormous impact 
on the topology on our field). Thus, rather than simply barging on, it may be 
worth a brief look at the case of the p-adic absolute value to try to understand 
what is behind the truth of the proposition. As before, we put Ixl = p-vp(x). 

Since we're looking for insight, not for proof, we will only look at the case 
where x, y E Z. Say that vp(x) = nand vp(Y) = m, so that 

pf x'y'. 
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Translating into the absolute values, we get 

and 

We will have Ixl > Iyl when n < m; say m = n + 10, with 10 > O. Then 

Now, since p f x', we have p f (x' + pey,), and therefore vp(x + y) = n, which 
means Ix + y\ = p-n = lxi, as the proposition states. 

On the other hand, suppose that Ixl = IYI, that is, n = m. Then we get 

with p f x' and p f y', and it is perfectly possible that pl(x' + y'). If so, the 
most we can say is that vp(x + y) ?: n = min{vp(x),vp(Y)}, which translates 
to 

Ix + yl ~ max{lxl, Iyl} = Ixl = Iyl· 

Notice that in either case two of the three absolute values lxi, Iyl and Ix + yl 
are equal. 

Problem 45 Give <Q the 5-adic topology, and consider the triangle whose vertices are 
x = 2/15, Y = 1/5, z = 7/15; what are the lengths of the three sides? 

In metric spaces, more important than triangles are the "balls" or "disks." 
These also turn out to be pretty strange in the case of an ultrametric. 

Definition 2.3.5 Let Ik be a field with an absolute value \ I. Let a E Ik be an 
element and r E lR+ be a real number. The open ball of radius r and center 
a is the set 

B(a,r)={xEIk:d(x,a) <r}={xEIk: Ix-al <r}. 

The closed ball of radius r and center a is the set 

B(a,r) = {x Elk: d(x,a) ~ r} = {x Elk: Ix - al ~ r}. 

These are standard definitions in any metric space. The open balls are 
the prototypes of the open sets, and the closed balls of the closed sets4 . 

Problem 46 Show that open balls are always open sets, and that closed balls are 
always closed sets. (This is true for any absolute value, archimedean or not.) 

4Here are the definitions: a set U is open if any element in U belongs to a (usually 
small) an open ball that is contained in U; a set is closed if its complement is an open set. 
A point x is a boundary point of a set S if any open ball with center x contains points 
that are in S and points that are not in S. S is closed exactly when it contains all of its 
boundary points. 
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For non-archimedean absolute values, we get some surprising properties: 

Proposition 2.3.6 Let Ik be a field with a non-archimedean absolute value. 

i) Ifb E B(a,r), then B(a,r) = B(b,r); in other words, every point that 
is contained in an open ball is a center of that ball. 

ii) If bE B(a, r), then B(a, r) = B(b, r); in other words, every point that 
is contained in a closed ball is a center of that ball. 

iii) The set B( a, r) is both open and closed. 

iv) Ifr i= 0, the set B(a,r) is both open and closed. 

v) If a, bE Ik and r, s E IR~, we have B(a, r) n B(b, s) i= 0 if and only if 
B(a,r) c B(b,s) or B(a,r) ~ B(b,s); in other words, any two open 
balls are either disjoint or contained in one another. 

vi) If a, bE Ik and r, s E IR~, we have B(a, r) n B(b, s) i= 0 if and only if 
B(a, r) c B(b, s) or B(a, r) ~ B(b, s); in other words, any two closed 
balls are either disjoint or contained in one another. 

PROOF: Most of this is easy. The weird parts all depend on the fact that 
"all triangles are isosceles;" drawing pictures may help understand what is 
going on. 

i) By the definition, bE B(a,r) if and only if Ib - al < r. Now, taking 
any x for which Ix - al < r, the non-archimedean property tells us that 

Ix - bl ~ max{lx - ai, Ib - al} < r, 

so that x E B(b,r); this shows that B(a,r) C B(b,r). Switching a and b, we 
get the opposite inclusion, so that the two balls are equal. 

ii) Replace < with ~ in the proof of (i). 
iii) The open ball B(a, r) is always an open set in any metric space. 

(Here's a one-line5 proof: any x in B(a,r) is in B(a,r) which is contained 
in B(a,r)!) What we need to show is that in our non-archimedean case, it 
is also closed. So take an x in the boundary of B(a,r); this means that any 
open ball centered in x must contain points that are in B(a, r). Choose a 
number s ~ r, and look at the open ball B(x, s) with center x and radius s. 
Now, since x is a boundary point, B(a, r) n B(x, s) i= 0, so that there exists 
an element 

Y E B(a, r) n B(x, s). 

This means that Iy - al < rand Iy - xl < s ~ r. Applying the non-archime
dean inequality, we get 

Ix - al ~ max{lx - yl, Iy - al} < max{s,r} ~ r, 

5This is a kind of logical skullduggery which delights mathematicians. Look closely at 
the definition, and you'll see it's correct ... 
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00 GO 
These are allowed ... but not this! 

Figure 2.2: Balls for non-archimedean absolute values 

so that x E B(a, r). This shows that any boundary point of B(a, r) belongs 
to B(a,r), which means that B(a,r) is a closed set. 

ivY This is a lot like (iii). 
v) We can assume that r ~ s (otherwise switch them around). If the 

intersection is not empty, there exists acE B(a, r) n B(b, s). Then we know, 
from (i), that B(a,r) = B(c,r) and B(b,s) = B(c,s). Hence 

B(a, r) = B(c, r) C B(c, s) = B(b, s), 

as claimed. 
vi) Identical to the preceding, using (ii). o 

Problem 47 Supply the missing portions of the proof (parts (iv) and (vi)). Why is 
the condition r t= ° necessary for closed, but not for open, balls? 

The geometry of the balls in a non-archimedean space seems very strange 
at first sight; getting a good feeling for it may be the most important initial 
step toward understanding the p-adic absolute value. The next problems are 
intended to help with that goal. 

Problem 48 Describe the closed ball of radius 1 around the point x = ° in Q with 
respect to the p-adic absolute value. Describe the open ball of radius 1 around x = 3; 
which integers belong to this ball? 

Problem 49 Let Ik = Q and I I = lip· Show that the closed ball B(O, 1) can be 
written as a disjoint union of open balls, as follows: 

B(O, 1) = B(O, 1) u B(l, 1) U B(2, 1) U ... U B(p - 1,1) 

(both the equality and the disjointness need to be checked). This gives another proof 
that the closed unit ball is open, since unions of open sets are always open. 

Problem 50 Take the 5-adic absolute value on Q. Show that B(l, 1) = B(l, 1/2) = 
B(l, 1/5}. What is going on here? 

Problem 51 Under the hypotheses of the proposition, show that for a E Ik and 
r E R+, r t= 0, the "sphere" {x Elk: Ix - al = r} is both an open and a closed set. 
(Notice that the "sphere" is not the boundary of the open ball. In fact, show that the 
boundary of the open ball is empty.) 
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Sets that are both open and closed are rather rare in the usual calculus, 
but are very common when we are dealing with non-archimedean absolute 
values. (As we've just seen!) So we give them a name. 

Definition 2.3.7 Let lk be a field with an absolute value I I (or, more gener
ally, any metric space). We say a set S c lk is clopen if it is both an open 
and a closed set. 

The fact that there are so many clop en sets around makes the topology 
of fields with non-archimedean valuations rather strange. For example, recall 
that a set S is called disconnected if one can find two open sets U1 and U2 

such that 

• neither S n U1 nor S n U2 is empty. 

The idea, of course, is that such an S is made up of two "pieces" (namely, 
the intersections with each of the open sets). Sets which cannot be divided 
in this way are called connected. 

Problem 52 Show that a set S is disconnected if and only if we can write it as a 
union S = A U B of two sets satisfying the condition 

AnB= AnB= 0, 

where, for a set X, X means the closure of X, that is, the union of X and all of its 
boundary points. 

Problem 53 What are the connected sets in lR? (Hint: they appear all the time in 
elementary calculus.) 

Problem 54 Show that in a field with a (non-trivial) non-archimedean valuation every 
closed ball with radius r > 0 is disconnected. Is the same true for open balls? 

If we take a point x E lk, we define the connected component of x to be 
the union of all the connected sets that contain x. Since the union of two 
non-disjoint connected sets is connected, this is a connected set, so we can 
describe it as the largest connected set containing x. For example, if lk = ~ 
is the real numbers, then the connected component of any point x E ~ is 
all of ~ (simply because ~ is connected). Things are quite different in the 
non-archimedean case: 

Proposition 2.3.8 In a field lk with a non-archimedean absolute value, the 
connected component of any point x E lk is the set {x} consisting of only that 
point. 
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Problem 55 Prove the Proposition. In the language of general topology, this says 
that lk: is a totally disconnected topological space. 

What this says is that there are really no interesting connected sets in 
Ik: only the sets with only one element are connected. On the other hand, 
provided the absolute value on Ik is non-trivial, the set {x} is not open (if 
every set {x} were open, the topology on Ik would be discrete, i.e., every set 
would be open, which only happens with the trivial absolute value). 

Problem 56 Take the usual absolute value on IQ>, which of course is archimedean. Are 
there any clopen sets in IQ> with respect to this absolute value? Is IQ> totally disconnected 
with respect to this absolute value? 

The same questions make sense in the real numbers, of course. Are there any 
clopen sets in IH?? 

Problem 57 Take the p-adic absolute value on IQ>. Show that with respect to this 
absolute value every open ball is the disjoint union of open balls. (So that open balls 
are disconnected in a rather dramatic way.) Do you think this is true for any field with 
a non-archimedean absolute value? If not, can you come up with a counter-example? 

2.4 Algebra 

So far, we have mostly concentrated on the geometry we obtain from an 
absolute value on a field Ik. In this section, we take a more algebraic point
of-view, and look for connections between (non-archimedean) absolute values 
and the algebraic structure6 of the underlying field. These connections turn 
out to be quite serious. In fact, they point to a tight connection between 
geometric and algebraic properties of such fields. (This section necessarily 
requires a little more background in abstract algebra than the preceding ones, 
but shouldn't be very hard to manage.) 

To begin with, every non-archimedean absolute value is attached to a 
subring of the field Ik, and this subring has some rather nice properties: 

Proposition 2.4.1 Let Ik be a field, and let II be a non-archimedean valua
tion on Ik. The set 

tJ = B(O, 1) = {x Elk: Ixl :<::: 1} 

is a subring of Ik. Its subset 

\lJ = B(O, 1) = {x Elk: Ixl < 1} 

is an ideal of tJ. Furthermore, \lJ is a maximal ideal in tJ, and every element 
of the complement tJ - \lJ is invertible in tJ. 

6in the sense of abstract algebra 
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Problem 58 Prove the Proposition. It is all a matter of using the definitions di
rectly, and remembering that the absolute value is non-archimedean. Notice that the 
statement about the complement of q3 implies at once that q3 is a maximal ideal. 

Rings that contain a unique maximal ideal whose complement consists of 
invertible elements are called local rings. The Proposition, then, shows us 
how to attach to any non-archimedean absolute value on Ik a subring of Ik 
which is a local ring. Let's give it a name: 

Definition 2.4.2 Let Ik be a field and I I be a non-archimedean absolute value 
on Ik. The subring 

(') = B(O, 1) = {x Elk: Ixl :S I} c Ik 

is called the valuation ring of I I. The ideal 

~ = B(O, 1) = {x Elk: Ixl < I} c (') 

is called the valuation ideal of I I. The quotient 

is called the residue field of I I· 
(For the residue field, remember that the quotient of a ring by a maximal 
ideal is always a field.) 

It is natural to expect that many of the properties of the absolute value 
are connected to algebraic properties of its associated valuation ring. In fact, 
one can develop the theory by concentrating on this side of things (so that 
finding an absolute value on a field gets translated into finding a subring with 
certain properties). Exactly what properties characterize the rings that arise 
in this way is a question that will be touched upon in one of the problems 
for this section. 

Since we'll be mostly interested in the p-adic absolute values, let's record 
what we get in that case: 

Proposition 2.4.3 Let Ik = Ql and let I I = I Ip be the p-adic absolute value. 
Then: 

i) the associated valuation ring is (') = Z(p) = {alb E Ql: p f b}; 

ii) the valuation ideal is ~ = pZ(p) = {alb E Ql : p f b and pia}; 

iii) the residue field is f1, = lFp (the field with p elements). 

PROOF: All we need to do is remember the definitions. We have 

when 
a val 
-=p -
b bl 
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So we get that alb E C) if and only if v 2:: O. If alb is in lowest terms, this 
just means p f b, as claimed. Similarly, alb E I.l3 happens when v > 0, hence 
when p f b and pia. The last statement is an easy exercise in quotient rings.o 

Problem 59 Prove the last statement in the Proposition. (Hint: the jazzy proof 
begins with the inclusion Z '-+ Z(p), and checks that it induces a map on quotient 
rings. ) 

Problem 60 Compute the valuation ring, valuation ideal, and the residue field for 
the non-archimedean valuations on F(t) introduced above. 

One could go further in exploring these connections between absolute 
values and algebraic structure, but we will stop here, at least for now. As 
we go along, we will develop a clearer feeling for how the connection works 
by finding out more and more about the specific case of the p-adic absolute 
value. The following problems use a little more background from abstract 
algebra. 

Problem 61 Consider Q with a p-adic absolute value, and let a E Z. Describe the 
open ball B(a,l) with center a and radius 1 in terms of the algebraic structure. Use 
your description to interpret algebraically the fact (Problem 49) that the closed ball 
B(O,l) is the disjoint union of open balls of radius 1. 

Problem 62 In the case of the p-adic absolute value, the valuation ideal is a principal 
ideal, that is, it is the set of multiples of an element of (9 (to wit, the element p). Is 
this always the case for the examples we have considered? Make a conjecture as to 
whether it will always be the case for any non-archimedean absolute value. (Hint: if 
so, it shouldn't be too hard to prove in general. .. ) 

Problem 63 Let Ik be a field, and let II be an absolute value on Ik. Define a valuation 
von Ik by 

v(x) = -log Ixl 

for x =I 0 and v(O) = +00. Check that if I I is non-archimedean then this is indeed a 
valuation (i.e., it has the properties listed in Lemma 2.1.3). 

i) If I I is the p-adic absolute value, how does v relate to the p-adic valuation vp ? 
What is the image of v in this case? 

ii) Show that the valuation ideal of I I is a principal ideal if and only if the image 
of v is a discrete additive subgroup of R (We showed above that the image is 
a subgroup; the point here is the discreteness, which means that each element 
of the subgroup is contained in an open interval that does not contain any other 
elements of the subgroup.) 

iii) Show that if the image of v is a discrete subgroup of R then the valuation ring (9 

is a principal ideal domain whose only prime ideals are 0 and s,p. (For example, 
check that this happens for the p-adic absolute values.) 
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Having built our foundation, we can now apply the general theory to the 
specific case of the field IQ of rational numbers. Extending our scope to 
include all fields of algebraic numbers (Le., finite extensions of IQ), or even 
to include what the experts call "global fields" in general, would not be 
very hard. Nevertheless, we have preferred to stick, at first, to the most 
concrete example available. In a later chapter, we will consider some aspects 
of the problem of extending valuations from IQ to larger fields. More details 
about the theory of valuations on global fields can be found in several of the 
references. 

3.1 Absolute Values on Q 

We have already found a few examples of absolute values on the field IQ of 
rational numbers. The next step will be to show that these are essentially 
all the possible absolute values; for that we will need to introduce a refined 
notion of what it means for two absolute values to be "the same." Up to 
that notion of equivalence, we will be able to show that the absolute values 
we have are the complete list of possible absolute values on IQ. Finally, we 
will prove the product formula as an initial example of how all the absolute 
values work together in the arithmetic of IQ. 

We begin by recording what has been achieved so far, namely that we 
have constructed the following absolute values on the field IQ: 

• the trivial absolute value; 

• the "usual" absolute value 1 100' which we have called the "absolute value 
at infinity," and which is associated to the real numbers; 

• for each prime p, the p-adic absolute value lip. 

Notice that, except for the trivial absolute value (which we will tend to 
ignore), we have written all of these in the form lip, where p is either a 
prime or 00. It turns out to be convenient to think of the symbol 00 as some 
sort of prime number in :2:, and refer to it as "the infinite prime," and to 
the corresponding absolute value as the "oo-adic" absolute value. This will 
allow us to say things like "lip for all primes p ::; 00." Though there are 



44 3 p-adic Numbers 

some reasons 1 for doing this, at this point we will use it only as a notational 
convenience. 

To be able to state our main theorem in this section, we must first make 
a good definition of when two absolute values are "the same." The main idea 
here is that we use absolute values on a field lk to introduce a topology (open 
and closed sets, connectedness, etc.) on lk. So it is reasonable to define: 

Definition 3.1.1 Two absolute values I 11 and I 12 on a field lk are called 
equivalent if they define the same topology on lk, that is, if every set that is 
open with respect to one is also open with respect to the other. 

This is easier to say than to check, so we had better find a more accessible 
criterion: 

Lemma 3.1.2 Let I 11 and 112 be absolute values on a field lk. The following 
statements are equivalent: 

i) I 11 and I 12 are equivalent absolute values; 

ii) for any x E lk we have Ixl1 < 1 if and only if Ixl2 < 1; 

iii) there exists a positive real number 0: such that for every x E lk we have 

PROOF: We follow the usual method of proving a circle of implications 

(i) ===} (ii) ===} (iii) ===} (i) 

(1) First, suppose (i), i.e., that III and 112 are equivalent. Then any sequence 
that converges with respect to one absolute value must also converge in the 
other (because the topologies are the same). But, given any x E lk, it is easy 
to see that 

lim xn = 0 
n->oo 

with respect to the topology induced by an absolute value I I if and only if 
Ixl < 1. This gives (ii). 
(2) We leave it to the reader to prove that (ii) implies (iii), not because it is 
easy, but because it is the hardest part of the theorem, and the convoluted 

IThe reasons hinge on the close connection between primes and absolute values that 
we are about to establish. If all the other absolute values correspond to primes, then so 
should the usual absolute value. As to why it should be called the infinite prime, that 
is far less clear. In fact, John H. Conway has been heard to argue quite vigorously that 
the "usual" absolute value should be attached to the "prime" -1, and this does seem to 
make more sense. (Think of the ±1 that appears in prime factorizations.) Unfortunately, 
number theorists are too used to talking of "primes at infinity" for this to change easily, 
and we have preferred to go along with convention. 
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argument that one ends up resorting to can only be appreciated after one 
has become convinced that easier methods don't work. The next problem 
includes some hints. 
(3) If we assume (iii), we get that 

Ix - all < r {==} Ix - alg < r {==} Ix - al2 < r1/o., 

so that any open ball with respect to I 11 is also an open ball (albeit of different 
radius) with respect to 112. This is enough to show that the topologies defined 
by the two absolute values are identical. D 

Problem 64 Prove step (2) above. The first hurdle is finding the number Ct. For 
that, just choose any appropriate Xo and choose Ct to be the unique real number that 
will make Ixoll = Ixol~. The proof will be done if you can show that the same equation 
will hold for every x E Ik; it is here that you have to find a way to use condition (ii). 
(This is quite hard, but worth a try. The argument suggested in Appendix A is quite 
sophisticated, and it will be hard to understand why it is needed unless some effort has 
been expended to do it in an easier way.) 

Problem 65 Let I h and I 12 be two absolute values on a field Ik. If every open ball 
with respect to one of these is also an open ball with respect to the other, show that 
the induced topologies are identical, i.e., that every set that is open with respect to 
the one is open with respect to the other. (Hint: this only requires a straightforward 
reading of the definition.) 

Problem 66 Show that we can add the following condition to the list in the propo
sition: 

iv) for any x E Ik, we have Ixll :S: 1 if and only if Ixl2 :S: 1. 

Problem 67 Suppose that I I is an absolute value that is equivalent to the trivial 
absolute value. Must it be the trivial absolute value? Do we need to change the 
definition of "nontrivial"? 

Problem 68 Show that if p and q are two different primes, the p-adic and the q-adic 
absolute values are not equivalent. Do the same when p is a prime and q = (X). 

Problem 69 Show that in general a non-archimedean absolute value cannot be equiv
alent to an archimedean absolute value. 

As an example, recall that we considered, in Problem 31, an absolute 
value defined by 

Ixl = c-Vp(X) , 

where c> 1 was a real number. Now we can check that this is equivalent to 
the p-adic absolute value-just choose a so that co. = p. We will see later 
that the choice c = p is dictated by "global" considerations (namely, the 
product formula). 

Now we come to the main theorem in this section. It says that we have 
already found all the absolute values on IQ. 



46 3 p-adic Numbers 

Theorem 3.1.3 (Ostrowski) Every non-trivial absolute value on Q is equiv
alent to one of the absolute values lip, where either p is a prime number or 
p= 00. 

PROOF: Let I I be a non-trivial absolute value on Q. We will consider the 
possible cases. 
a) Suppose, first, that II is archimedean. We want to show, in this case, that 
it is equivalent to the "usual" (oo-adic) absolute value. Let no be the least 
positive integer for which Inol > 1 (there has to be one, because otherwise 
I I would be non-archimedean). Now of course we can find a positive real 
number a so that 

Inol = no· 
(Finding a formula for a is an easy exercise on logarithms.) We claim that 
this a will do, that is, that it will realize the equivalence between II and 1100. 
That means that we want to prove that for every x E Q we have Ixl = Ixl~. 
Given the known properties of absolute values, this will follow if we know it 
for positive integers, that is, if we show that Inl = nc< for any positive integer 
n. (Check this!) 

We know that the equality holds for n = no. To prove it in general, we 
use a little trick. Take an arbitrary integer n, and write "in base no," i.e., in 
the form 

2 k n = ao + alnO + a2no + ... + akno, 

with 0 ::; ai ::; no - 1 and ak -=I o. Notice that k is determined by the 
inequality n~ ::; n < n~+1, which says that 

k= l~J, log no 

where Lx J denotes the "floor" of x, that is, the largest integer that is less 
than or equal to x. Now take absolute values. We get 

Inl = lao + alnO + a2n~ + ... + akn~1 
::; laol + lallno + la2In~C< + ... + lakln~C< 

Since we chose no to be the smallest integer whose absolute value was greater 
than 1, we know that lail ::; 1, so that we get 

Inl ::; 1 + no + n6C< + ... + n~C< 

ka nO' -n ---
- 0 n a 1 0-
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If we set G = ng / (ng - 1) (which is, the reader will note, a positive number), 
we can read this as saying that 

Now we use a dirty trick. This formula applies for every n (since the one we 
chose was arbitrary); applying it to an integer of the form nN we get 

(the crucial point is that the number G does not depend on n-check its 
definition above!). Taking N-th roots, we get 

Since any N will do, we can let N ----t 00, which makes '{(C ----t 1, and so gives 
an inequality: Inl ::::; nC<. This is half of what we want. 

Now we need to show the inequality in the opposite direction. For that, 
we go back to the expression in base no 

2 k n = ao + alnO + a2no + ... + akno· 

Since n k+ 1 > n > n k we get o - 0' 

so that 
Inl > n(k+1)c< _ Ink+1 _ nl > n(k+l)c< _ (nk+ 1 _ n)C< 

-0 0 -0 0 , 

where we have made use of the inequality proved in the previous paragraph. 
Now since n 2:: n~, it follows that 

G' (k+l)c< = no 

and once again G' = 1- (1-1/ no) C< does not depend on n and is positive. U s
ing precisely the same trick as before, we get the reverse inequality Inl 2:: nC<, 
and hence Inl = nC<. This proves that I I is equivalent to the "usual" absolute 
value 1100, as claimed. 
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b) Now suppose I I is non-archimedean. Then, as we have shown, we have 
Inl ::; 1 for every integer n. Since II is non-trivial, there must exist a smallest 
integer no such that I no I < 1. 

The first thing to see is that no must be a prime number. To see that, 
suppose that no = a . b with a and b both smaller than no. Then, by our 
choice for no, we would have lal = Ibl = 1 and Inol < 1, which cannot be. 
Thus, no is prime, so let's call it by a prime-like name; set p = no. Now, of 
course, we want to show that I I is equivalent to the p-adic absolute value, 
where p is this particular prime. 

The next step is to show that if n E Z is not divisible by p, then Inl = 1. 
This is not too hard. If we divide n by p we will have a remainder, so that 
we can write 

n = rp+ s 

with 0 < s < p. By the minimality of p (see the preceding paragraph), we 
have lsi = 1. We also have Irpi < 1, because Irl ::; 1 (because I I is non
archimedean) and Ipi < 1 (by construction). Since I I is non-archimedean 
(and therefore "all triangles are isosceles"), it follows that I n I = 1. 

Finally, given any nEZ, write it as n = pVn' with p t n'. Then 

where c = Ipl-l > 1, so that II is equivalent to the p-adic absolute value, as 
claimed. 0 

Problem 70 There's one fishy thing about the first part of the proof: once we have 
the conclusion we know no = 2, but while we're proving we have to consider the 
possibility that no is large. So we might have n < no, which would make the k in the 
expansion in base no equal to zero. In other words, if n < no its expansion in base no 
is just n. Do we need to modify the proof to account for this case? 

This theorem is the main reason for thinking of the "usual" absolute value 
I I (Xl (or of the inclusion IQJ '--t lR from which it comes) as some sort of "prime" 
of IQJ. The point is that then it is true that every absolute value of IQJ "comes 
from" a (finite or infinite) prime. 

There are lots of contexts in arithmetic where it is useful to work with "all 
of the primes," that is, to use information obtained from all of the absolute 
values of IQJ. In terms of general "feeling," the real absolute value records 
information related to sign, while the other absolute values record information 
related to the various primes. Here is the most fundamental example of this: 

Proposition 3.1.4 (Product Formula) For any x E IQJx, we have 

where p ::; 00 means that we take the product over all of the primes of IQJ, 
including the ''prime at infinity. " 
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PROOF: It is easy to see that we only need to prove the formula when x is 
a positive integer, and that the general case will then follow. So let x be a 
positive integer, which we can factor as x = p~l . p~2 ... p~k. Then we have 

for i = 1, 2, ... ,k 

The result then follows. o 
This formula establishes a close relation between the absolute values of 

Q; for example, it says that if we know all but one of the absolute values of 
a number x E Q, then we can determine the missing one. This turns out to 
be surprisingly important in many applications (for example, the theory of 
heights on algebraic varieties). 

A similar result is true for finite extensions of Q, except that in that case 
we must use several "infinite primes" (one for each different inclusion into lR. 
or <C). Of course, we also need an extension of Ostrowski's theorem for this 
to make sense, and a correct notion of a "prime" in such a field. It is because 
of these technicalities that we have chosen to deal only with the theory over 
Q. See the references for the general case. 

3.2 Completions 

We are now ready to construct the p-adic fields Qpo The main point will be to 
pursue the idea that all of the absolute values on Q are "equally important," 
and hence should be treated equally. We first need to recall three important 
concepts from basic topology (we only state them in the context of fields with 
absolute values, but they are really general concepts for metric spaces). 

Definition 3.2.1 Let lk be a field and let II be an absolute value on lk. 

i) A sequence of elements Xn E lk is called a Cauchy sequence if for every 
c > 0 one can find a bound M such that we have IXn - Xm I < c whenever 
m, n 2': M. 

ii) The field lk is called complete with respect to I I if every Cauchy sequence 
of elements of lk has a limit. 

iii) A subset S c lk is called dense in lk if every open ball around every 
element of lk contains an element of S; in symbols, if for every x E lk 
and every c > 0 we have 

B(x, c) n S i- 0. 
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The reader has probably met these concepts in a course on real analysis, 
since one of the big things about the field ~ of real numbers is that it is 
a complete field, i.e., that every Cauchy sequence converges. In intuitive 
terms, a Cauchy sequence is a sequence that "ought to" have a limit, because 
its terms get crowded into smaller and smaller balls (think of choosing a 
sequence of smaller and smaller values for c). In other words, a field is 
complete if sequences that ought to converge do converge. 

Problem 71 Show that Q is not complete with respect to the usual absolute value 
1100' (This was done in real analysis, too; one way is to construct a Cauchy sequence 
whose limit, if it existed, would have to be the square root of 2. Since 2 has no square 
root in Q, there can be no limit.) 

The following problem is intended to deal with a very common misunder
standing (which the reader also probably met in her course on real analysis). 
It is especially important to get this straight now, because things will get 
confusing for non-archimedean absolute values. 

Problem 72 Show that the condition 

lim IXn+l - xnl = 0 
n--->oo 

is not the same as the Cauchy condition, by showing that there exists a sequence of 
real numbers that satisfies this condition but is not a Cauchy sequence. In informal 
terms, the Cauchy condition is stronger than the assertion that successive terms of the 
sequence get closer and closer together. (Hint: one example of such a sequence was 
met in Calculus, in the portion on series ... ) 

Our reason for recalling these notions is that, as our theory now stands, 
the archimedean absolute value I 100 is different from all the rest, because 
there exists an inclusion Q '-+ ~ of Q into a field ~ (yes, we do mean the real 
numbers) which satisfies the following conditions: 

• the absolute value I 100 extends to ~, 

• ~ is complete with respect to the metric given by this absolute value, and 

• Q is dense in ~ (with respect to the metric given by 1100)' 

This is all probably well-known to the reader (see the standard references 
for proofs). We summarize that list of properties by saying that ~ is the 
completion of Q with respect to the absolute value I 100' The point is that 
~ is the smallest field containing Q which is complete with respect to this 
absolute value. We can see this because any such field would have to include 
the limit of any Cauchy sequence of elements of Q, and, since Q is dense in 
~, any element of ~ is a limit of such a sequence. 

Problem 73 Can you prove the assertions of the preceding paragraph? 
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Our main goal in this section is to restore the parity between the absolute 
values on Q, by constructing, for each of the other absolute values, a comple
tion analogous to R That is, we want to show that for each prime p there 
exists some field to which we can extend the p-adic absolute value, which is 
then complete with respect to the extended absolute value, and in which Q is 
dense. The existence of such a field is a general theorem about metric spaces, 
which the reader may have met in another context; if S02, she may prefer to 
skip directly to the end of this section. In any case, this section is for those 
who wish to see the full construction3 of such a completion. 

Problem 74 Should we bother trying to construct a completion of Q with respect to 
the trivial absolute value? 

For the rest of this section, we let I I = I Ip be the p-adic absolute value on 
Q, for some prime p. The first useful thing to note is that Cauchy sequences 
can be characterized much more simply when the absolute value is non
archimedean. 

Lemma 3.2.2 A sequence (xn) of rational numbers is a Cauchy sequence 
with respect to a non-archimedean absolute value I I if and only if we have 

lim IXn+l - xnl = o. 
n--+CXJ 

PROOF: If m = n + r > n, we get 

IXm - xnl = IXn+r - Xn+r-l + Xn+r-l - Xn+r-2 + ... + Xn+l - xnl 

because the absolute value is non-archimedean. The result then follows at 
~re. D 

This makes analysis much simpler when the field is non-archimedean, as 
we will see later. We should insist, once again, that this Lemma is false for 
archimedean absolute values, as Problem 72 shows. 

The next step is to show that Q is not complete with respect to the p-adic 
absolute values, so that the completion process is really going to accomplish 
something. 

Lemma 3.2.3 The field Q of rational numbers is not complete with respect 
to any of its nontrivial absolute values. 

20r if she is willing to grant the existence of a completion 
30ne remark is important: as in the case of the construction of the real numbers, the 

method of constructing our completion is less important than the properties ofthe resulting 
field. In other words, the construction itself is important only because it establishes the 
existence of a completion. It will not be of any further use after that, so that skipping this 
section is a real possibility. 
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PROOF: Given Ostrowski's Theorem (3.1.3), we need to check this for lip for 
p::; 00. That Q is not complete for 1100 is well known (and left as a Problem 
above), so we look at the p-adic absolute values. 

If we take I I = I Ip for some prime p, we need to construct a Cauchy 
sequence in Q which does not have a limit in Q. This was essentially the 
content of a problem from Chapter 1. To construct the necessary Cauchy 
sequence, we need only find a coherent sequence of solutions modulo pn of 
an equation that has no solution in Q. We work this out in the case p -I=- 2, 
and leave the case p = 2 to the reader. 

Thus, suppose p -I=- 2 is a prime. Choose an integer a E Z such that 

• a is not a square in Q; 

• p does not divide a; 

• a is a quadratic residue modulo p, i.e., the congruence X 2 == a (mod p) 
has a solution. 

For example, we might take any square in Z and add a multiple of p to get 
a suitable a. Now we can construct a Cauchy sequence (with respect to lip) 
in the following way: 

• choose Xo to be any solution of x5 == a (mod p); 

• choose Xl so that Xl == Xo (mod p) and xi == a (mod p2) (the existence of 
Xl was proved in one of the problems in Chapter 1, and is easy to see in 
any case); 

• in general, choose Xn so that 

(the same remark applies as to existence). 

It was in fact checked in Problem 18 that such sequences do exist whenever 
the initial element Xo exists (it is here that we need to know that p -I=- 2). 

The next step is to check that we really have a Cauchy sequence. It is 
clear from the construction that we have 

which shows, together with Lemma 3.2.2, that the sequence of the Xn is 
indeed a Cauchy sequence. On the other hand, we also know that 

Ix;' - al = If-£p n+11 ::; p-(n+l) ----> 0, 

so that the limit, if it existed, would have to be a square root of a. Since a 
is not a square, there can be no limit, which shows Q is not complete with 
respect to lip. 0 
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Problem 75 Finish the proof, by showing that Q is also not complete with respect to 
the 2-adic absolute value. (Hint: the easiest way is probably to use cube roots instead 
of square roots ... ) 

Since IQ is not complete, we need to construct a completion. There are 
several ways to do so. We will follow the path of least resistance. What we 
want to do is to "add to IQ the limits of all the Cauchy sequences." Since at 
first no such limits exist, one cannot literally do that. What we do instead 
is to use a standard mathematician's ruse, replacing the limit we do not 
have with the sequence we do have (so that in the end the sequence will 
be sort of like a limit of itself!). To do that, we begin with the set of all 
Cauchy sequences as the basic object, then use the algebraic operations on 
IQ to handle the resulting object. (The construction uses some notions from 
abstract algebra; these can be avoided, but doing so would make our life 
much harder.) 

Definition 3.2.4 Let I I = I Ip be a non-archimedean absolute value on IQ. 
We denote bye, or ep(lQ) if we want to emphasize p and IQ, the set of all 
Cauchy sequences of elements of IQ: 

e = ep(lQ) = {(xn) : (xn) is a Cauchy sequence with respect to lip}, 

The first thing to check is that e has a natural ring structure, using the 
"obvious" definitions for the sum and product of two sequences. 

Proposition 3.2.5 Defining 

(Xn) + (Yn) = (xn + Yn) 

(xn) . (Yn) = (xnYn) 

makes e a commutative ring with unity. 

PROOF: Easy; the only thing that really needs checking is that the sequences 
on the right hand side are Cauchy. D 

Problem 76 Check that the sum and product of two Cauchy sequences, as defined 
above, are also Cauchy sequences. 

Problem 77 What is the zero element of the ring e? What is the unit element? Can 
you decide which elements are invertible? 

The ring e is not a field (as is clear from the previous exercise, since not 
all non-zero elements are invertible). In fact, it contains "zero divisors," i.e., 
non-zero elements whose product is zero. 

Problem 78 Find two non-zero Cauchy sequences (say, with respect to the p-adic 
absolute value, but it doesn't really matter) whose product is the zero sequence. 
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We should check at once that this huge ring does contain the field of ra
tional numbers, since, after all, the point of the whole exercise is to construct 
something which extends IQ. In fact, all we need to do is notice that if x E IQ 
is any number, the sequence 

x, x, x, x, ... 

is certainly Cauchy; we will call it the constant sequence associated to x and 
denote it by (x). Then we have 

Lemma 3.2.6 The map x f---+ (x) is an inclusion oflQ into e. 

PROOF: This is clear from the definitions. o 
The main problem with e is that it does not yet capture the idea of 

"adding all limits of all Cauchy sequences," because different Cauchy se
quences whose terms get close to each other "ought" to have the same limit, 
but they are different objects in e. This sort of situation calls for identifying 
two sequences which "ought" to have the same limit, which means we must 
pass to a quotient4 of e. 

It is here that the algebraic structure helps us, because it makes it easy 
to describe when it is that two sequences "ought" to have the same limit: 
this should happen when their terms get close to each other, i.e., when the 
difference of the sequences tends to zero. So we begin by looking at the set 
of sequences that tend to zero. 

Definition 3.2.7 We define Nee to be the ideal 

of sequences that tend to zero with respect to the absolute value lip. 

Problem 79 Check that :N is in fact an ideal of C. (This is really already known from 
way back when in Calculus class.) 

Lemma 3.2.8 N is a maximal ideal of e. 

PROOF: Let (xn ) E e be a Cauchy sequence that does not tend to zero (Le., 
does not belong to N), and let I be the ideal generated by (xn ) and N. What 
we want to show is that I must be all of e. We will do that by showing that 
the unit element (1) (i.e., the constant sequence corresponding to 1) is in I. 

4The operation of passing to a quotient to identify objects is one of those absolutely 
basic ideas that one meets over and over in mathematics. In every case, one has to 
introduce an equivalence relation of some sort, then identify equivalent elements. In our 
situation, we will take advantage of the machinery of abstract algebra to do this, since e 
is a commutative ring. 
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This is enough, because any ideal that contains the unit element must be the 
whole ring. 

Now, since (xn) does not tend to zero and is a Cauchy sequence, it must 
"eventually" be away from zero, that is, there must exist a number c > 0 and 
an integer N such that IXnl ;:::: c > 0 whenever n ;:::: N. (If this is not clear, 
the reader should find a proof!) Now in particular this means that Xn i= 0 
for n ;:::: N, so that we may define a new sequence (Yn) by setting Yn = 0 if 
n < N and Yn = l/xn if n ;:::: N. 

The first thing to check is that (Yn) is a Cauchy sequence. But that is 
clear because if n ;:::: N we have 

which shows (Yn) E e because I I is non-archimedean. (One can modify the 
argument slightly so that it works also if II is archimedean, but this is easier.) 

Now notice that, 

{ 
0 ifn<N 

XnYn = 
1 ifn;::::N 

This means that the product sequence (xn)(Yn) consists of a finite number 
of O's followed by an infinite string of l's. In particular, if we subtract it 
from the constant sequence (1), we get a sequence that tends to zero (in fact, 
which goes to zero and then stays there). In other words 

But this says that (1) can be written as a multiple of (xn) plus an element 
of 'N, and hence belongs to I, as we had claimed. 0 

Problem 80 To make sure that you understand the proof, check that it works just 
as well for any field Ik with an absolute value 1 I. (The only catch is to supply a version 
of the check that the "almost inverse" sequence is Cauchy that does not depend on 
1 1 being non-archimedean. But this is easy: the use of Lemma 3.2.2 is really a red 
herring.) 

We want to identify sequences that differ by elements of 'N, on the grounds 
that they ought to have the same limit. This is done in the standard way, by 
taking the quotient of the ring e by the ideal 'N. To make things even nicer, 
taking a quotient of a ring by a maximal ideal gives a field. 

Definition 3.2.9 We define the field of p-adic numbers to be the quotient of 
the ring e by its maximal ideal 'N: 
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Notice that two different constant sequences never differ by an element 
of 'N (their difference is just another constant sequence ... ). Hence, we still 
have an inclusion 

Ql '-----> Qlp 

by sending x E Ql to the equivalence class of the constant sequence (x). 
Very well: we now have a field, and an inclusion of Ql into the field. It 

remains to check that it has the stated properties of the completion. The 
first is that the absolute value J Jp extends to Qlp. This follows easily from 
the following lemma. 

Lemma 3.2.10 Let (xn) E e, (xn) (j. 'N. The sequence of real numbers JxnJp 
is eventually stationary, that is, there exits an integer N such that JXn Jp = 

JxmJp whenever m, n :::: N. 

PROOF: Since (xn) is a Cauchy sequence which does not tend to zero, we 
can (as in the previous lemma) find c and Nl such that 

On the other hand, there also exists an integer N2 for which 

n, m :::: N2 ===? JXn - xmJ < c. 

We want both conditions to be true at once, so set N = max {N 1, N 2}. Then 
we have 

n, m :::: N ===? JXn - xmJ < max{JxnJ, JxmJ}, 

which gives JXn J = JXm J by the non-archimedean property ("all triangles are 
isosceles" ). 0 

This means that the following definition makes sense: 

Definition 3.2.11 If A E Qlp is an element of Qlp, and (xn) is any Cauchy 
sequence representing A, we define 

(Recall that we have defined Qlp as a quotient, so that elements of Qlp are 
equivalence classes of Cauchy sequences.) There are several things to check 
here, but they are all quite easy to verify, so we leave them to the reader. 

Problem 81 Let A E Qp. Explain why the limit defining I Ip exists. 

Problem 82 Let A E Qp. Show that IAlp, as defined above, does not depend on the 
choice of the sequence (Xn) representing A. In other words, show that if we replace 
(Xn) by an equivalent sequence (xn) (which means, recall, that the difference (Xn -Xn) 
is a sequence that tends to zero), then 
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(One can either do this directly, or note that the definition of lip defines a function on 
e which maps N to zero, and hence descends to the quotient.) 

Problem 83 Let A E <Qp. Show that IAlp = 0 if and only if A = O. (You will need to 
remember what it means for an element to equal zero in the quotient.) 

Problem 84 Show that the function I Ip : <Qp ------+ lR+ is a non-archimedean abso
lute value. 

Problem 85 Let x E <Q, and let (x) be the constant sequence which is the image of x 
in <Qp. Check that the two definitions of lip are consistent, that is, that l(x)lp = Ixlp. 
(Yes, this is essentially obvious.) 

These problems, taken together, show that we have indeed defined an 
absolute value on IQp which extends the p-adic absolute value on IQ. There is 
one more important fact which should be recorded, which is that the set of 
values is the same for both fields. 

Problem 86 Show that the image of <Q under I Ip is equal to the image of <Qp under 
lip. In other words, for any A E <Qp which is different from zero, there exists n E Z 
such that IAlp =p-n. 

To check that we have indeed obtained the completion, we must now 
check the remaining two requirements: that IQ is dense in IQp, and that IQp 
is complete. The first is easy: 

Proposition 3.2.12 The image oflQ under the inclusion IQ '---' IQp is a dense 
subset of IQp. 

PROOF: We need to show that any open ball around an element A E IQp 
contains an element of (the image of) IQ, i.e., a constant sequence. So fix a 
radius e. We will show that there is a constant sequence belonging to the 
open ball B(A, e). 

First of all, let (xn) be a Cauchy sequence representing A, and let e' be 
a number slightly smaller than e. By the Cauchy property, there exists a 
number N such that IXn - xml < e' whenever n, m 2: N. Let y = XN and 
consider the constant sequence (y). We claim that 

(y) E B(A,e), 

Le., that IA - (y)1 < E. To see this, recall that A - (y) is represented by the 
sequence (xn - y), and that we have defined 

I(xn - y)1 = lim IXn - yl· 
n-TOO 

But for any n 2: N we have 
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so that, in the limit, we get 

lim IXn - yl ~ c' < c, 
n--->oo 

so that (y) does indeed belong to B(>", c), and we are done. D 

Problem 87 Why does < become::; in the limit? Do we really need the business of 
decreasing c; slightly to c;'? 

It remains to show that Qp is complete, i.e., that every Cauchy sequence 
in Qp converges to an element of Qp. This seems almost obvious, until one 
realizes that a Cauchy sequence of elements of Qp amounts to a sequence of 
Cauchy sequences, which seems to make everything very confusing. In fact, 
it is not so hard if one keeps one's wits, but it is the sort of thing best done 
in the privacy of one's own home, so we leave it to the reader: 

Problem 88 Show that <Qlp is complete with respect to lip. To do this, follow these 
steps: 

i) Let AI, A2, ... , An, ... be a Cauchy sequence of elements of <Qlp (so that each 
A "is" a Cauchy sequence of elements of <Ql, taken up to equivalence). Use the 
fact that the image of <Ql is dense in <Qlp to show that it is possible to find rational 
numbers y(l), y(2), ... , y(n), ... such that we have 

(Read carefully! This says that the absolute value of the difference between An 
and the constant sequence (y(n)) tends to zero. The absolute value is taken in 
<Qlp, not in <Ql.) 

ii) Show that the rational numbers y(l), y(2), ... , y(n), . .. themselves form a Cau
chy sequence in <Ql. Let A denote the element of <Qlp corresponding to this 
sequence. 

iii) Show that 
lim An = A. 

n->oo 

iv) Conclude that <Qlp is complete. 

Putting it all together, we have proved the following theorem: 

Theorem 3.2.13 For each prime p E Z there exists a field Qp with a non
archimedean absolute value lip, such that: 

i) there exists an inclusion Q '---> Qp, and the absolute value induced by 
I Ip on Q via this inclusion is the p-adic absolute value; 

ii) the image ofQ under this inclusion is dense in Qp (with respect to the 
absolute value lip); and 

iii) Qp is complete with respect to the absolute value lip' 



3.3 Exploring Qp 59 

The field Qp satisfying (i), (ii) and (iii) is unique up to unique isomorphism 
preserving the absolute values. 

PROOF: We've done it all except the uniqueness statement. To get that, 
suppose we have another such field K. Then we can think of the inclusion 
Q '----t K as a map defined on a dense subset of Qp. Since this map has to 
preserve the absolute values of any element of Q, it is continuous. Now, any 
map defined on a dense subset which is continuous can be extended uniquely 
to the whole field, so that we get a map Qp --+ K which is the unique 
continuous extension of the inclusion of Q in K. It is now easy to check that 
it is an isomorphism that preserves the absolute values, and its uniqueness is 
clear by construction. 0 

Problem 89 Fill in the gaps in the uniqueness proof: 

i) Since the inclusion preserves the operations on Q, and these operations are 
continuous, show that the extended map is a homomorphism offields (and hence 
is injective). 

ii) Perform precisely the same construction in reverse to get a map in the opposite 
direction, and show that the resulting map is the inverse of the first. (Hint: the 
composition is a continuous map which restricts to the identity on Q!) 

iii) Check that the isomorphism thus constructed preserves absolute values. (Hint: 
is the absolute value function itself continuous?) 

The strong uniqueness statement is important because it says we can now 
forget the construction of Qp, and work only with the properties specified in 
the theorem. This is precisely what we will do. 

Problem 90 Why is it important that something be "unique up to unique isomor
phism"? Can you give an example of some mathematical object that is unique up to 
isomorphism, but not up to unique isomorphism? 

3.3 Exploring Qp 

The goal of this section is to explore the field Qp which we have just con
structed. The basic idea for the whole section is to get away from the explicit 
construction we gave above. Since, as we showed, the field Qp is entirely de
termined by its properties, we can forget the construction, and begin the 
exploration from the list of properties we have just obtained: 

• there is an absolute value II = lip on Qp, and Qp is complete with respect 
to this absolute value; 

• there is an inclusion Q'----t Qp whose image is dense in Qp, and the restric
tion of the absolute value I Ip to (the image of) Q coincides with the p-adic 
absolute value; 
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• the set of values of Q and of Qp under I Ip is the same; specifically, the two 
sets 

{x E R+ : x = IAlp for some A E Q} 

and 
{x E R+ : x = IAlp for some A E Qp} 

are both equal to the set {pn : n E Z} U {O} of powers of p, together with 
O. 

As the wording suggests, we will from now on identify Q with its image 
under the inclusion in Qp, that is, we will think of Q as a sub field of Qp. The 
last property turns out to be very useful, so we will re-state it as a lemma. 

Lemma 3.3.1 For each x E Qp, x 1= 0, there exists an integer n E Z such 
that Ixlp = p-n. 

Another way of saying this is in terms of the p-adic valuation vp. Re
member that for x E Q we had Ixlp = p-vp(x); so what the lemma says 
is: 

Lemma 3.3.2 For each x E Qp, x 1= 0, there exists an integer vp(x) such 
that Ixl p = p-vp(x). In other words, the p-adic valuation vp extends to Qp-

As before, we extend vp to all of Qp by setting vp(O) = +00. Later in 
this section (when we have a good way to describe elements of Qp) we will 
be able to describe vp in a more precise way. 

Now we begin to explore the structure of Qp. Since Qp is a field with 
a non-archimedean valuation, we can consider the corresponding valuation 
ring, as in Chapter 2. The resulting ring has a name of its own: 

Definition 3.3.3 The ring of p-adic integers is the valuation ring 

Of course, Zp is also the closed unit ball with center 0, so we already know 
a few things about it. For example, it is a clop en set in Qp, because every 
ball is. Here is a much more precise description: 

Proposition 3.3.4 The ring Zp of p-adic integers is a local ring whose max
imal ideal is the principal ideal pZp = {x E Qp : I x Ip < I}. Furthermore, 

i) Qnzp=z(p)={~EQ:pfb}. 

ii) The inclusion Z <---+ Zp has dense image. In particular, given x E Zp 
and n ::::: 1, there exists a E Z, 0 ~ a ~ pn -1, such that Ix - al ~ p-n. 
The integer a with these properties is unique. 
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iii) For any x E Zp, there exists a Cauchy sequence an converging to x, of 
the following type: 

• an E Z satisfies 0 :S an :S pn - 1 

• for every n we have an == an-l (mod pn-l). 

The sequence (an) with these properties is unique. 

PROOF: Most of this follows directly from things we have already checked. 
To begin with, Zp is a valuation ring, hence is a local ring. To see that the 
valuation ideal is indeed generated by p, we use Lemma 3.3.1: 

This shows that the valuation ideal is contained in pZp, but that is enough, 
since the valuation ideal is a maximal ideal, and pZp i- Zp. Now to the other 
statements: 

(i) is clear, because we already know that Z(p) is the valuation ring in Q 
corresponding to the p-adic valuation. 

To check (ii), choose x E Zp and n ~ 1. Since Q is dense in Qp, one can 
certainly find alb E Q which is close enough to x so that 

Ix - ~ I :S p-n < 1. 

The point is to show that we can in fact choose an integer. But notice that 
for alb as above, we will have 

I~I :S max {lxI, Ix - ~I} :S 1, 

which says that alb E Z(p), that is, p f b. Now recall that, from the elementary 
theory of congruences, if p f b there exists an integer b' E Z such that bb' == 1 
(mod pn), which implies (the reader will check) that 

I~ -ab'l :S p-n, 

and of course ab' E Z. Finally, we need to check that we can find an integer 
between zero and pn - 1, but this is clear from the connection between con
gruences modulo powers of p and the p-adic absolute value: choosing a to be 
the unique integer such that 

and 

gives Ix - al :S p-n (check it!), which is what we want. 
Finally, (iii) follows directly from (ii); just use (ii) 

integers n = 1, 2, .... 
for a sequence of 

o 
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This proposition says several important things (and implies a bunch of 
others-see the next few Corollaries). For example, it says that Zp is the 
completion of Z with respect to the p-adic absolute value, which would be 
another way to begin the whole story. Notice, too, that the sequence (iii) is 
exactly one of our "coherent sequences" from Chapter 1, so that things are 
coming together rather nicely. Here are some more consequences. 

Corollary 3.3.5 Qlp = Zp[l/p]' that is, for every x E Qlp there exists n ~ 0 
such that pnx E Zp- The map Qlp ---> Qlp given by x f---t px is a homeomor
phism. (This means that it is a continuous map with a continuous inverse, 
so it preserves the topology ofQlp.) The sets pnzp, n E Z form a fundamental 
system of neighborhoods of 0 E Qlp which covers all of Qlp. 

PROOF: If x E Qlp, we can compute its valuation vp(x). If vp(x) ~ 0, then x 
is already an element of Zp- Otherwise, vp(x) is negative, and we have 

which means that p-vp(x)x E Zp, as claimed. That multiplication by p is 
a homeomorphism is immediate from the fact that the field operations are 
continuous functions. The remaining statements will be checked in the next 
problem. 0 

Problem 91 Prove the corollary. Recall that a neighborhood of a point x is a set 
containing an open ball around x, and that a fundamental system of neighborhoods is 
a bunch of neighborhoods with the property that any other neighborhood contains one 
of them. Finally, a collection of sets covers a set X if the union of all the sets in the 
collection contains (or is) the set X. 

It may be useful to remember that a map is continuous exactly when the 
inverse image of any open set is an open set (this is often easier to work with 
than the 6-0 definition). 

Problem 92 (Just to keep us awake.) Describe a fundamental system of neighbor
hoods of 0 in ~ which also covers R 

Recall that we pointed out that the p-adic valuation vp can be extended 
to Qlp, because for any x E Qlp there exists an integer vp(x) such that Ixlp = 
p-vp(x). The last corollary allows us to understand this a little better: 

Problem 93 Show that we can give the following more natural description of vp(x): 
by the corollary, x belongs to some pnZp; let no be the largest n for which this is true; 
then vp(x) = no. (Be careful: no may very well be negative.) 

Hence, for example, vp(x) = 0 if x E Zp but x rt pZp, so that no = O. This 
agrees, of course, with the original definition, since vp(x) = 0 means Ixl = 1. 
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One of the main points of these results is that the topology (neighbor
hoods, open sets, ... ) of Qp is closely connected to its algebraic structure 
(multiplication by p, subrings). For example, it is very useful to burn into 
one's brain that for x, y E Qp we have 

if and only if 

The next few results forge ahead in this direction. 

Corollary 3.3.6 For any n 2': 1, the sequence 

where the map 7l,p ----+ 7l,p is given by x f-4 pnx, is exact, and the maps are 
continuous (where we give 7l,jpn7l, the discrete topology). In particular, 

Recall that a sequence A ~ B ~ C is exact if image(f) = 
ker(g). A five-term sequence as above is exact when it is exact at each stage, 
so that the claims above are: 

• the map 7l,p ----+ 7l,p given by multiplication by pn is injective (its kernel is 
the image of zero, which is zero) 

• there is a map 7l,p ----+ 7l,jpn7l, which is surjective 

• the kernel of this map is precisely the image of 7l,p under the first map, 
which of course is pn7l,p. 

Recall, too, that the discrete topology is the one where all sets are open. 

Problem 94 Check that the Corollary is true. 

Problem 95 Use the Corollary (plus other facts about Zp) to show that if x E Zp, 
x i= 0, then nx i= 0 for any n E Z unless n = O. In group-theoretic parlance, this says 
that the additive group zt is torsion-free. 

The sets a + pn7l,p, with a E Q and n E 7l, are closed balls in Qp (with 
center a and radius p-n), hence are clop en sets. Since Q is dense in Qp, 
they cover all of Qp. As we have already shown, the space Qp is totally 
disconnected (the connected component of any point is the set consisting of 
only that point). Furthermore, given any two points we can always find balls 
around them that do not intersect (which is a useful thing to know about a 
topology: points can be separated). In big words: 

Corollary 3.3.7 Qp is a totally disconnected Hausdorff topological space. 
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A more interesting topological property is compactness, which plays a big 
role in classical analysis. A subset X of a topological space is called compact 
if it has the following property: 

• any collection of open sets which covers X has a finite sub collection which 
also covers X. 

This is a rather unintuitive definition, but it turns out to be quite important. 
For example, the compact sets in lR are precisely the closed and bounded 
sets, which play a big role in real analysis. 

Problem 96 Read up on compactness in any introductory book on general topology. 
In particular, prove, or find out how to prove, the following: 

i) A closed interval in R is compact. 

ii) The image of a compact set by a continuous map is a compact set. 

iii) Any sequence of points contained in a compact set has a subsequence which is 
convergent. 

iv) In a metric space, a set X will be compact if it is complete (every Cauchy 
sequence in X converges to a point in X) and totally bounded (for every c, 
there exists a finite covering of X by balls of radius c). 

Problem 97 A space is called locally compact when every point has a neighborhood 
which is a compact set. Show that R is locally compact. (This property is very 
important in classical analysis.) 

Problem 98 If Ik is a field with an absolute value, show that Ik is locally compact if 
and only if there exists a neighborhood of zero that is compact. (Hint: if a set X is 
compact, the set {a + x : x E X} is the image of X under a continuous map, hence is 
also compact.) 

Corollary 3.3.8 Zp is compact, and IQp is locally compact. 

PROOF: Since Zp is a neighborhood of zero, proving that it is compact is 
enough to prove that IQp is locally compact, so that the second statement 
follows from the first. 

To prove the first statement, remember that we already know that Zp is 
complete (because it is a closed set in a complete field), so that (using one of 
the statements above), what we need to prove is that it is totally bounded, 
that is, that for any c one can cover Zp with finitely many balls of radius c. 
It is enough to check this for every c = p-n, n 2: O. But remember that 

Zp/pnzp ~ Z/pnZ, 

and that the cosets of pnzp in Zp are also balls in the p-adic topology. This 
means that as a ranges through 0, 1, ... , pn - 1 (or any other set of coset 
representatives), the pn balls 

a + pnzp = {a + pnx : x E Zp} = {y E Zp : Iy - al :::; p-n} = B(a,p-n) 

cover Zp, and we are done. D 
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Problem 99 Why is it enough to check for this special family of values for c? 

One should notice that the crucial element in the compactness is the 
finiteness of the quotients. In fact, one can check that knowing that one 
quotient is finite will do the trick. 

Problem 100 Let Ik be a field, I I a non-archimedean absolute value on Ik, 0 C Ik 
the valuation ring, and ~ the valuation ideal. Suppose that Ik is complete and that 
~ is principal. Show that Ik is locally compact if and only if the residue field 0 /~ is 
finite. Do we really need the completeness of Ik? Do we really need to know that ~ is 
principal? 

The elements of IQlp are, at this point, hard to grab hold of, because we 
only "know" IQlp via its basic properties. To counteract this a little, we will 
now give two different descriptions of the elements of IQlp, both of which 
we have already met in Chapter 1: as "coherent sequences," and as "p
adic expansions." The description in terms of coherent sequences, which we 
will give first, is interesting for theoretical reasons, while the description in 
terms of expansions will give us the most "concrete" version of IQlp. The first 
description will be stated in rather sophisticated terms, and the reader may 
want to skim through it rather than check all the details. 

We begin from item (iii) in the last proposition: given x E Zp, we can 
find a rather special kind of Cauchy sequence converging to x. This sequence 
has the property of being "coherent," which we met in Chapter 1: 

• an+! == an (mod pn) 

and in addition converges to x because Ix - an Ip :::; p-n. Finally, we checked 
that this sequence is unique. 

On the other hand, suppose we have such a sequence (an). The coherence 
property clearly makes it a Cauchy sequence, because Ian+! - anl p :::; p-n. 
Hence, it must converge to some element, which will be in Zp because the 
a's are in Z. 

Problem 101 Check that a limit of a Cauchy sequence of integers must be an element 
of Zp (rather than merely of Qp). 

This means that we can identify the elements of Zp with such sequences. 
We will summarize this in the next proposition, but in a rather sophisticated 
language. To set it up, let's write 'Pn for the projection on the quotient 

'Pn : Zp ----> Z/pnZ. 

As an element of Z/pnZ, we then have 'Pn(x) = an (mod pn) (just because 
the set of integers between 0 and pn - 1 gives representatives for the cosets, 
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and the an are chosen as the representatives corresponding to x). We also 
set 

An = Z/pnz 

and think of it as a topological ring with a discrete topology5. We have an 
obvious map 1/Jn : An -----) An-I, which sends (a mod pn) to (a mod pn-I). 
We want to consider the product of all these rings, that is, the ring of se
quences (an) such that an E An. (The operations are defined in the obvious 
way, term by term.) There is a standard way to put a topology on this ring 
(it is called the product topology). This topology is rather tricky to describe, 
and we do not really need to know much about it. We just point out that 
the product ring will be compact with this topology. 

With all that set up, we can state: 

Proposition 3.3.9 The projection maps ipn together give an inclusion 

ip : Zp '---> II An 
n~1 

which identifies Zp, as a topological ring, with the closed subring of II An 
consisting of the coherent sequences, i.e., those sequences (an) for which we 
have 1/Jn(an) = an-I for every n > l. 

PROOF: If all the concepts are understood, this is just a re-statement of 
known facts. See the next problem. D 

Problem 102 Prove the proposition. Notice that we could use this to give another 
construction of Zp, with a more algebraic flavor (and a bit more subtle to handle). For 
example, the fact that closed subsets of a compact set are necessarily compact would 
provide the proof that Zp is compact in this version of the theory. 

It is often useful to describe how several functions are related by drawing 
what is called a "commutative diagram." One says a diagram of homomor
phisms is commutative if the homomorphisms obtained by "following different 
routes around the diagram" always coincide. For example, the diagram 

5This is mumbo-jumbo. All it means is that all the other rings will have a topology 
because they have absolute values. The ring An, on the other hand, doesn't come with 
such a "built-in" topology, so we just give it the simplest one of all: the one where all sets 
are open, which corresponds to the trivial absolute value. The point is that, this makes 
the important map, which is the projection from Zp to An, be continuous. 
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is commutative, because reducing modulo pn and then reducing modulo pn-1 
is the same as reducing modulo pn-1 by itself, so that one can follow either 
path from Z to An - 1 and get the same map. Using the language of commu
tative diagrams, one can describe a very important property of Zp: 

Problem 103 Show that Zp has the following property, which is an instance of what 
are usually called universal properties: given any ring R plus homomorphisms R --> An 
(one for each n 2: I) such that all the triangles 

are commutative, there exists a unique homomorphism R --> Zp from which all the 
maps to the An are obtained (i.e., all the obvious triangles commute). In highfalutin' 
terms, this says that Zp is the inverse limit of the An. 

One can begin the theory from this point, and deduce all the rest from 
the universal property; this is the approach in [Ser73]. For ordinary mortals, 
however, this may all be a little too abstract, so we go on to obtain a canonical 
way to represent the elements of Qlp as "power series in p." This will finally 
return us to the picture we sketched in Chapter 1. 

We begin with a p-adic integer x E Zp. As we have just shown, there 
exists a coherent sequence of integers an converging to x such that: 

• an == x (mod pn) 

• an+! == an (mod pn) 

• 0 :::; an :::; pn - l. 

To understand the an a little better, we write them in base p. The point is 
that for integers written in base p the process of reducing modulo pn is very 
simple: just strip off all but the last n digitsB• This means that the coherence 
condition 

an+! == an (mod pn) 

simply says that the last n digits of both numbers are the same. Going up 
the sequence, what we get is 

ao = bo 
a1 = bo + b1P 
a2 = bo + b1P + b2p2 

a3 = bo + b1P + b2p2 + b3p3 

O:::;bo :::;p-1 
0:::; b1 :::; p-1 
O:::;b2 :::;p-1 
O:::;b3 :::;p-1 

6 Just as in base 10: to get your number modulo 10, keep the last digit only; to get it 
modulo 100, keep the last two, and so on. 
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and so on. Putting all of this together, we get an infinitely long expansion 

Of course, to be able to really write that equals sign with a clear conscience, 
we must check that the series on the right does converge to x. But that is 
easy: 

Lemma 3.3.10 Given any x E Zp, the series 

obtained as above converges to x. 

PROOF: Remember that a series converges to x if the sequence of its partial 
sums converges to x. But the partial sums of our series are exactly the an, 
which we already know converge to x (we picked them that way). 0 

To sum up, this gives 

Corollary 3.3.11 Every x E Zp can be written in the form 

x = bo + blP + b2p2 + ... + bnpn + ... 

with 0 :s; bi :s; P - 1, and this representation is unique. 

PROOF: We have checked all but the uniqueness. To see that, notice that we 
already know the an are unique, and this implies that the bn are too (because 
they are just the digits 7 in base p). 0 

Now, we need to get all of Qp. But remember that any element of Qp can 
be written in the form y/pm with y E Zp. If we express y as a power series 
in p, then divide by pm, we just get a power series in p where some of the 
powers may be negative. So: 

Corollary 3.3.12 Every x E Qp can be written in the form 

x b_nop-no + ... + bo + blP + b2p2 + ... + bnpn + ... 

with 0 :s; bn :s; p - 1 and -no = vp(x). This representation is unique. 

PROOF: All that remains to be checked is the statement about vp(x), which 
~C~g. 0 

7Should they be called pigits? Or pits? 
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This lands us right back in Chapter 1, and shows that one can think of 
an element of Qp, i.e., a p-adic number, as a p-adic expansion. As we noted 
in passing before, the coefficients bn must be taken in a set of representatives 
of the classes modulo p. The numbers between 0 and p - 1 are only the 
most obvious choice for these representatives. There are situations, however, 
where other choices are expedient. 

Problem 104 Show that the condition 0 ::; bn ::; P - 1 can be replaced by the con
dition bn EX, where X is any set of coset representatives for the quotient 7lp /p71p . 

(Note that the condition on X is that it be a subset of tlp which gives coset represen
tatives, so that the bn don't even need to be integers!) 

The p-adic units are the invertible elements of Zp. We will denote the set 
of all such elements by Z;. Since x E Zp means Ixl s:: 1 and x-I E Zp means 
lx-II = Ixl-I s:: 1, we see that 

Z; = {x E Qp : Ixl = 1}. 

It is also easy to see that 

Z; n Q = { ~ E Q : p f ab}. 
As in every ring, the p-adic units form a group. In our case, this group 
contains quite a few elements (notice that Z; n Q is already quite large). We 
will later study its structure a little more closely. 

Problem 105 Let x E 7lp . What condition on its p-adic expansion will guarantee 
that x is a p-adic unit? 

Problem 106 What are the invertible elements of 7l? Of F[t]? Of q[tJ] (power series 
in one variable with coefficients in C)? 

Problem 107 One of the consequences of the fact that Zp is compact is the fact 
that every infinite sequence of elements of tlp has a convergent subsequence. Use the 
p-adic expansion to show this directly. 

3.4 Hensel's Lemma 

The theorem known as "Hensel's Lemma" is probably the most important 
algebraic property of the p-adic numbers (and of other fields like Qp, which 
are complete with respect to a non-archimedean valuation). Basically, it says 
that in many circumstances one can decide quite easily whether a polynomial 
has roots in Zp- The test involves finding an "approximate" root of the poly
nomial, and then verifying a condition on the derivativeS of the polynomial. 

8To be precise, the formal derivative, so that if F(X) = aD + alX + a2X2 + ... + anxn 
is the polynomial, F' (X) = al + 2a2X + ... + nanxn-l is its derivative. There is no limit 
process involved. 
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Theorem 3.4.1 (Hensel's Lemma) Let F(X) = ao + a1X + a2X 2 + ... + 
anxn be a polynomial whose coefficients are in Zp. Suppose that there exists 
a p-adic integer a1 E Zp such that 

and 
F'(al) =j. 0 (mod pZp) , 

where F'(X) is the (formal) derivative of F(X). Then there exists a unique 
p-adic integer a E Zp such that a == a1 (mod pZp) and F(a) = O. 

PROOF: We will show that the root a exists by constructing a Cauchy se
quence of integers converging to it. The idea is essentially what is known as 
"Newton's method" in the classical theory. The attentive reader will recog
nize an idea that we have been using repeatedly since the first chapter. 

What we will construct is a sequence of integers aI, a2, ... , an, ... such 
that, for all n 2: 1, we have 

It is easy to see that such a sequence will be Cauchy (in fact, it is a "coherent 
sequence" in our terms above), and that its limit a will satisfy F(a) = 0 (by 
continuity) and a == a1 (mod p) (by construction). Conversely, a root a will 
determine such a sequence an. Thus, once we have the an the theorem will 
be proved. 

The main assumption in the theorem is that a1 exists. To find a2, we 
note that condition (ii) requires that 

for some b1 E Zp. Plugging this expression into the polynomial F(X) and 
expanding, we get 

(This is easy to check directly, but it is probably best to think of it as a kind 
of formal Taylor expansion-see problem 108.) To show that one can find 
a2, we have to show that one can find b1 so that 
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Now, we know that F(al) == 0 (mod p), so that F(al) = px for some x. The 
equation then becomes 

which gives (after we divide by p) 

x + F'(aI)bl == 0 (mod p). 

To solve this, notice that F'(al) is not divisible by p, and hence is invertible 
in Zp, so that we can (and must) take 

bl == -x(F'(aI))-1 (mod p). 

(In fact, we can choose such a bl in Z, with 0 :::; bl :::; P - 1, and then bl is 
uniquely determined.) For this choice of bl , we set a2 = al + blP, which will 
have the stated properties. 

This shows that one can take the first step: given aI, find a2. But a 
careful inspection shows that exactly the same calculation works to get an+l 
from an. Hence, we can construct the whole sequence, and it is uniquely 
determined at each step. This proves the theorem. 0 

Problem 108 Let F(X) be a polynomial with coefficients in a field lk of characteristic 
zero. Show that the Taylor formula is true for F(X), i.e., that 

F(x + h) = F(x) + F'(x)h + ~F"(X)h2 + ~F"'(X)h3 + ... 

for any x, h E t. 

Problem 109 Check that the calculation given in the proof does indeed work to get 
O!n+l from O!n and that O! is indeed unique. 

Problem 110 Why do we say that the calculation in the proof is analogous to New
ton's method for finding approximate solutions to polynomial equations? 

Problem 111 What happens to the calculation if we do not assume that we have 
F'(O!l) =j:. 0 (mod p)? Can you give an example where the theorem fails because this 
condition does not hold? (Hint: look back at our games with the polynomial X2 - m.) 

One should emphasize that there are many different versions of this result, 
all of which tend to be referred to as "Hensel's Lemma." For example, the 
next problem gives a version that can be used when the hypothesis on F' (ad 
does not hold; later on in this section we give still another example, which 
will be of crucial importance later on. 
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Problem 112 Show that in Hensel's Lemma we can weaken the condition F'(Ol) ¢. 0 
by replacing it with the condition 1F(01)1 < 1F'(01)1 2 What should replace the 
conclusion that 0 == 01 (mod p)? Why is this version of Hensel's Lemma more general 
than the first? Can you give an example where this version can be used but the original 
version cannot? (Hint: if you did the previous problem, you should be able to do this 
one too.) 

A nice application of Hensel's Lemma is to determine which roots of unity 
can be found in Qp. Recall that an element ( of a field is called an m-th root 
of unity if (m = 1; it is called a primitive m-th root of unity if in addition 
(n i=- 1 for 0 < n < m. In JR, there are only two roots of unity, 1 and -1. On 
the other hand, we have already checked (in a problem long ago) that the 
equation X 2 + 1 = 0 has a root in Q5, and it is easy to see that its root will 
be a fourth root of unity. So it is interesting to try to determine which roots 
of unity exist. 

To use Hensel's Lemma, we need a polynomial. Since we are looking for 
roots of unity, we will use F(X) = xm -1. Notice that F'(X) = mXm - 1 , so 
that F'().) = m).m-l will be congruent to zero modulo p if either p divides 
). (in which case). will not be an approximate root of F(X) anyway) or p 
divides m. Thus, the second condition in the theorem will hold provided m 
is not divisible by p. For the first condition, we need to find an approximate 
root, and it is actually quite easy to decide when that can be done: 

Problem 113 Fix a prime p and a number m not divisible by p. Show that there 
exists an integer 01 such that o'i." == 1 (mod p) but 01 ¢. 1 (mod p) if and only if 
gcd(m,p - 1) > 1, and that for any such 01 the least positive integer m with this 
property must be a divisor of p - 1. (Hint: Z/pZ is a field, and the set of its invertible 
elements is a cyclic group.) 

Then Hensel's Lemma yields: 

Proposition 3.4.2 For any prime p and any positive integer m not divisible 
by p, there exists a primitive m-th root of unity in Qp if and only if m divides 
p-1. 

Problem 114 Prove the proposition. There are at least two loose ends to tie: the 
"only if" part, and the verification that such roots of unity must be in Zp, and not 
merely in Qp. 

If m divides p - 1, then any m-th root of unity is also a (p - 1)-st root of 
unity, so that the upshot is that the roots of unity in Qp of order prime to p 
are exactly the (p - 1 )-st roots. This determines all the roots of unity in Qp, 
except for the possibility that there be pn-th roots of unity in Qp- These are 
inaccessible9 to us by this method. It turns out, however, that they are not 

9Can you explain why? What would using Hensel's lemma to find, say, p-th roots of 
unity involve? 
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in Qp (except when p = 2, in which case ±1-but no fourth roots of I-do 
belong to (2). Hence, we have determined all the roots of unity belonging 
to Qp, though we will only be able to prove that this is the case later on. (If 
you can't wait, look at page 114.) 

Problem 115 Show that the set of roots of unity in Qp is a subgroup of the group 
Z; of p-adic units. Show that the set of (p -l)-st roots of unity in Qp is a cyclic group 
of order (p - 1). (The main content of the last statement is that there are (p - 1) 
p-adic roots of the polynomial X p - 1 - 1. Use Hensel's Lemma.) 

Another interesting application is to determine the squares in Qp. This 
is something we essentially did in Chapter 1. First we do the p-adic units: 

Proposition 3.4.3 Let p I- 2 be a prime, and let b E Z; be a p-adic unit. 
If there exists al such that at == b (mod pZp) , then b is the square of an 
element of z; . 
PROOF: Apply Hensel's Lemma to X2 - b, and notice that p I- 2 and b E Z; 
are enough to make sure that 2al =I'- 0 (mod p). 0 

Then we extend to all of Qp, by noticing that any x E Qp can be written 
as x = pVp(x)x' with x' E Z; (in fact, that is pretty much the definition of 
vp(x)). What the next result says is that x will be a square if vp(x) is even 
and x' is a square. 

Corollary 3.4.4 Let p I- 2 be a prime. An element x E Qp is a square 
if and only if it can be written x = p2ny2 with n E Z and y E Z; a p-adic 
unit. The quotient group Q; /(Q;)2 has order four. Ifc E Z; is any element 
whose reduction modulo p is not a quadratic residue, then the set {1, p, c, cp } 
is a complete set of coset representatives. 

PROOF: The first statement is essentially obvious (because powers of p and 
p-adic units "do not mix"). Applying the proposition and standard properties 
of quadratic residues and non-residues gives the rest. 0 

It is interesting to compare this result to its analogue in 1R, which says that 
a real number is a square if it is positive, and that the quotient IRx / (IR X)2 
is of order two, with coset representatives {I, -I}. From this point of view, 
the Corollary can be thought of as a p-adic version of the "rule of signs" for 
multiplying real numbers. 

We still need to consider p = 2. For that, we need to use the stronger 
form of Hensel's Lemma given in problem 112, since F'(al) = 2al will of 
course always be divisible by 2. 

Problem 116 Show that if bE Z2, and b == 1 (mod 8Z2) (so that in particular b is 
a 2-adic unit), then b is a square in Z2. Conversely, show that any 2-adic unit which 
is a square is congruent to 1 modulo 8. Conclude that the group Qi /(Qi)2 has order 
8, and is generated by the classes of -1, 5, and 2, so that a complete set of coset 
representatives is {I, -1, 5, -5, 2, -2, 10, -10}. 
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To conclude this section, we prove another form of Hensel's lemma, which 
is more general than the first. The idea is to interpret the first form of Hensel's 
Lemma as saying that if a polynomial factors modulo p and one of the factors 
is of the form (X - a), so that 

f(X) == (X - a)g(X) (mod p), 

then there is a similar factorization in Zp[X]. The obvious generalization is 
to consider arbitrary factorizations. The condition on the derivative, above, 
essentially says the the root a is not a double root, that is, that the second 
factor g(X) is not divisible by (X - a). For general factorizations, then, the 
assumption should be that the factors are relatively prime (as polynomials) 
modulo p. Let's make this precise: 

Definition 3.4.5 Let g(X) and h(X) be polynomials in Zp[X]. Let g(X) and 
h(X) E lFp[X] be the polynomials obtained by reducing the coefficients modulo 
p. We say g(X) and h(X) are relatively prime modulo p if gcd(g, h) = 1 in 
lFp[X], or, equivalently, if there exist polynomials a(X), b(X) E Zp[X] such 
that 

a(X)g(X) + b(X)h(X) == 1 (mod p), 

where we understand congruence coefficient-by-coefficient, i.e., we say two 
polynomials are congruent modulo p if each coefficient of one is congruent 
modulo p to the corresponding coefficient of the other. 

ProbleIll 117 Is being relatively prime modulo p weaker or stronger than being rela
tively prime in Zp[X]? 

The next theorem says that this idea does work. 

TheoreIll 3.4.6 (Hensel's LeIllma, Second Form) Let f(X) E Zp[X] be 
a polynomial with coefficients in Zp, and assume that there exist polynomials 
gl(X) and h1(X) in Zp[X] such that 

i) gl (X) is monic10 

ii) gl(X) and h1(X) are relatively prime modulo p, and 

iii) f(X) == gl(X)h1(X) (mod p) (understood coefficient-by-coefficient). 

Then there exist polynomials g(X), h(X) E Zp[X] such that 

i) g(X) is monic, 

ii) g(X) == gl(X) (mod p) and h(X) == h1(X) (mod p), and 

iii) f(X) = g(X)h(X). 

lOThis means that the coefficient of the term of highest degree is one. 
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PROOF: This is just like the original version: we start from the "approxi
mate" factorization, and improve the approximation more and more until, in 
the limit, we get a factorization over Zp. Notice that the conditions on g(X) 
imply that degg(X) = deggdX). 

Let d be the degree of f(X), and m be the degree of g1(X) (remember 
that g1 is monic). Then we can assume that deg(h1) :::; d - m (it could be 
less, because the top coefficient of f could be divisible by p). We want to 
construct two sequences of polynomials gn(X) and hn(X) such that 

i) each gn is monic and of degree m, 

(As always, we take the congruences coefficient-by-coefficient.) If we can find 
such sequences, we are clearly done, since going to the limit gives the desired 
polynomials g(X) and heX). In other words, the coefficients of, say, g(X) 
will be the limits of the corresponding coefficients of the gn(X). (Can you 
see why it's important to know that the degrees of the gn are not changing?) 

We already have g1(X) and h1(X); let's describe how to get g2(X) and 
h2(X), Since the g's are to be congruent, we must have 

for some polynomial r1(X) E Zp[X]; similarly, we must have 

To show that g2 and h2 exist, we simply have to show that it is possible to 
find r1 and 81 such that the desired conditions are satisfied. For that, we 
need to solve the equation 

which we expand to 

Multiplying out, we get 

f(X) == g1 (X)h1 (X) + p r1 (X)h1 (X) + p 81 (X)g1 (X) + p2 r1 (X)81 (X) 

Now remember that f(X) == g1(X)h1(X) (mod p), so that we have 
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for some kl(X) E Zp[X]. Rearranging, we get 

pk1(X) == pTl(X)h1(X) + P81(X)gl(X) (mod p2). 

Dividing through by p, we get 

This is the equation we need to solve to determine Tl and 81. 

The first step towards doing so is to recall that we have assumed that gl 
and hI are relatively prime modulo p. This means that we know that there 
exist a(X), b(X) E Zp[X] such that a(X)gl(X) + b(X)hl(X) == 1 (mod p). 
Consider, then, the two polynomials 

and 

These will almost do the trick: they clearly will make all the congruence 
conditions true. The only problem is that we have no control over the degree 
of h(X), and hence cannot guarantee that gl(X) + Pi'l(X) is monic. 

To remedy that, only a slight change is needed. We already know that 

i'1(X)h1(X) + Sl(X)gl(X) == k1(X) (mod p). 

Now divide i'l(X) by gl(X), and let Tl(X) be the remainder: 

i'l(X) = gl(X)q(X) + Tl(X), 

We know, of course, that degTl(X) < deggl(X). But now, if we set 

it all works out: 

Tl(X)h1(X) + 81(X)gl(X) == 
== (i'l(X) - gl(X)q(X))h1(X) + (Sl(X) + h1(X)q(X))gl(X) 

== i'1(X)h1(X) - gl(X)h1(X)q(X) + Sl(X)gl(X) + gl(X)h1(X)q(X) 

== h(X)h1(X) + Sl(X)gl(X) 

== k1(X) (mod p), 

so that our congruence conditions are satisfied, and the fact that the degree 
of Tl (X) is smaller than the degree of gl (X) is enough to guarantee that 
gl(X) + PTl(X) is monic, and we are done. 

This shows that g2 and h2 exist. Since they are congruent to gl and hI 
modulo p, they are also relatively prime modulo p, so that there will be no 
difficulty in going on to the next step. 

Now we repeat the argument changing the indices and exponents to find 
g3 and h3 . It is an easy exercise to show that this can always be done, and 
that produces the sequence whose convergence proves the theorem. D 
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Problem 118 To make sure you understand that final twist in the proof, work out 
the details for the following example. Let p = 2, and consider the polynomial f(X) = 
2X2 + X + 2. Modulo 2, this is easy to factor: just take 91(X) = X and h1(X) = 1. 
Follow the steps in the proof to find 92(X) and h2(X), and discuss what happens if 
we try to use 1'1 and 81 instead of T1 and 81. 

Problem 119 Work out the construction of 93 and h3 in full detail, to convince 
yourself that you understand the process. 

Problem 120 Fill in the last step of the proof by giving a full proof, by induction, 
that the 9n and hn exist for every n. 

The reader will have noticed that this argument is essentially identical 
to the one we gave for the first version of Hensel's Lemma. It might be 
interesting to check whether one can formulate a stronger version that is 
analogous to the one in problem 112. 

3.5 Local and Global 

One of the consequences of Hensel's Lemma is that, given a polynomial with 
integer coefficients, it is usually not too hard to decide whether it has roots 
in Zp, since it is enough to find roots modulo p. The "same" is true for JR, 
where we can usually decide whether there are roots by sign considerations 
(for example, if the polynomial has different signs at Xl and X2, there must 
be a root between these two numbers). 

Suppose, however, that we want to look for roots in Q. At least this much 
is easy to see: if there are roots in Q, then there are also roots in Qp for every 
p ::; 00 (i.e., in all the Qp and in JR). Hence we can certainly conclude that 
there are no rational roots if there is some p ::; 00 for which there are no 
p-adicll roots. 

The way to think about this situation is following Hensel's original anal
ogy: the p-adic fields (including JR) are analogous to fields of Laurent ex
pansions, and correspond to "local" information "near" the prime p. The 
fact that roots in Q automatically are roots in Qp for every p means that a 
"global" root is also a "local" root at each p, i.e, "everywhere." 

Much more interesting would be a converse: that "local" roots could be 
"patched together" to give a "global" root. This would be very useful, since 
deciding on the existence of local roots is very easy. Here is an (easy) example 
of such a converse. 

Proposition 3.5.1 A number X E Q is a square if and only if it is a square 
in every Qp, p ::; 00. 

11 Here, of course "oo-adic" means "real." In general, this section will constantly refer 
to all the absolute values taken together, and thus will constantly use the convention that 
the usual absolute value corresponds to the "prime" 00, so that we will write iQoo = lR for 
the real numbers. 
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PROOF: This is really very easy: for any x E Qp, we have 

If x is a square at infinity, it is positive. If it is a square at a prime p, then 
vp(x) is even. It follows (just write out the prime factorization) that such an 
x is a square. 0 

This very basic idea seems to go back to Hensel, but it was first clearly 
stated by Hasse: putting together local information at all p :::; 00 should give 
global information. Exactly in what sense this is true (if it is) depends on 
each specific problem, but there are many situations in which this principle 
plays a central role. 

A very interesting example of this sort of method is the theory of dio
phantine equations, in which we are given an equation for which we want 
to find solutions in Q, or at least to decide if any exist. This is in general 
an extremely difficult (and absolutely fascinating) subject, but in some cases 
the question can be decided by the local-global game. Consider, for example, 
the equation 

X2 + y2 + Z2 = o. 
One sees at once that the only solution is the trivial one X = Y = Z = 0, 
because this is the only solution in lR (and any other solution in Q would also 
be a solution in JR.). Similarly, it doesn't take too much doing to see that the 
equation 

X2 + y2 _ Z2 

does have a solution in Q, and therefore in all of the Qp. 
What one would hope for in this context is that one would have a perfect 

correspondence between "global" properties and "local" properties that hold 
"everywhere." In this example, it is clear that if a global solution (i.e., one 
in Q) exists, then local solutions exist for all primes (of course, since the 
solution in Q belongs to all the Qp). One would also like the converse to be 
true, i.e., that the lack of a global solution could always be detected locally. 
To put it in other words, one would like it if the existence of a local solution 
for every p would guarantee the existence of a global solution. This is far 
from clear, however, because the local solutions in each Qp live in different 
fields, and there seems to be no compelling reason why they should "glue 
together" somehow to provide a solution over Q. 

For equations like the ones above (of degree 2, homogeneous), a few ex
periments begin to convince us that the hope is indeed plausible, because for 
every equation that does not have solutions one can quickly find a prime so 
that the equation has no solutions in Qp: 

i) X2 + y2 + Z2 = 0 has no nontrivial solutions in JR.; 

ii) 3X2 + 2y2 - Z2 = 0 has no nontrivial solutions in Q3 (check!); 
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iii) X 2 - 3y2 = 0 has no nontrivial solutions in Q7 (check!). 

This suggests the following bold statement: 

Local-Global Principle: The existence or non-existence of solutions in Q 
(global solutions) of a diophantine equation can be detected by studying, for 
each p ::; 00, the solutions of the equation in Qp (local solutions). 

Of course, as stated, this is too vague to be a "theorem," but the local
global principle has proved to be a valuable guide for the study of diophantine 
problems. What it has suggested is a "plan of attack" on any given equation 
(or type of equation): first think locally, then try to put together the local 
information to obtain global information. 

The most naIve version of the principle would be the one we suggested 
above: the statement that an equation has solutions in Q if and only if it has 
solutions in all the Qp- This sounds wonderful, since it says that "solvable 
locally everywhere" is the same as "solvable globally." Unfortunately, it is 
false: 

Problem 121 Show that the equation 

(X2 _ 2)(X2 - 17)(X2 - 34) = 0 

has a root in Qp for all p :::; 00, but has no roots in Q. 

Problem 122 (This is quite hard.) Show that X 4 - 17 = 2y2 is solvable locally 
everywhere, but is not solvable in Q. (The existence of local solutions is easily checked; 
the non-existence of rational solutions is the hard part.) 

One might try to salvage the principle in various ways, for example: 

Problem 123 Decide whether it is true that a polynomial in one variable with co
efficients in Z is irreducible in Q[X] if and only if it is irreducible in Qp[X] for every 
p :::; 00. (Recall that a polynomial is irreducible if it does not factor into a product of 
polynomials of lower degree.) 

Finally, here is an example where the principle is gloriously successful: 

Theorem 3.5.2 (Hasse-Minkowski) Let 

F(Xl' X 2 , ... Xn) E Q[X1 , X 2 , ... XnJ 

be a quadratic form (that is, a homogeneous polynomial of degree 2 in n 
variables). The equation 

has non-trivial solutions in Q if and only if it has non-trivial solutions in Qp 
for each p ::; 00. 
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The proof is just a little out of our reach in this book, since it requires 
more thorough study of quadratic forms and their properties than we are 
prepared to spend time on. A very good account of the proof can be found in 
[Ser73], where it is the culmination of the first half of the book. One should 
notice that this theorem completely solves the problem of deciding whether a 
quadratic form has non-trivial zeros, since the local question can be decided 
rather easily in each Case. In fact, for each prime p, an appropriate version of 
Hensel's Lemma shows that there is a finite procedure for deciding whether 
the equation is solvable in tQlp (so that a computer could do it). It is a little 
worrying that there are infinitely many primes to consider, but it turns out 
that the whole problem can be sufficiently broken down so that one gets a 
finite procedure for checking for local solutions at all primes, so that (given 
the Hasse-Minkowski theorem) the whole problem gets reduced to a finite 
procedure. 

In lieu of a proof of the Hasse-Minkowski theorem, it might be fun to 
work out in detail an example of its application. So let a, b, and c be rational 
numbers, and consider the equation 

We want to use the Hasse-Minkowski theorem to settle completely when it 
is that such an equation has non-trivial rational solutions ("non-trivial" just 
means "other than X = Y = Z = 0"). To start off, if any of a, b, and c is 
equal to zero, there certainly is a solution (with one variable non-zero, and 
the other two equal to zero). Next, it is clear that we can clear denominators, 
and assume that a, b, and c are integers. We can also assume that they have 
no common factors (which we could cancel). Finally, we Can aSsume that 
a, b, and c are square-free (Le., they have no factors which are squares), by 
absorbing any square factor into one of the unknowns. 

Problem 124 Suppose that a = a'n2 . Check that any rational solution (x,y,z) of 
aX2+by2+cZ2 = 0 corresponds to a rational solution (nx, y, z) of a' X2+by2+CZ2 = 
O. Explain why this means that we can assume that a, b, and c are square-free. 

Problem 125 We have already observed that we may assume that a, b, and c have 
no common factors. Show that in fact we can go farther, and assume that no two of 
these three numbers have any common factors. In other words, we may assume that 
the product abc is square-free. 

Very well, we are set up now as follows: we have an equation 

where a, b, and c are pairwise relatively prime integers with no square factors. 
What Hasse-Minkowski tells us is that we Can decide whether this equation 
has non-trivial rational solutions by looking at each tQlp in turn. So let's: 
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1. Suppose p = 00, so that Qp = lEt It's easy to see that the equation will 
have a non-trivial solution exactly when a, b, and c are not all positive or all 
negative. (If you have any doubts, work it out!) 

2. Suppose p is an odd prime that does not divide any of the coefficients. 
The first step towards a solution in Qp is to study the solutions modulo p. 

Proposition 3.5.3 Let p be an odd prime, and let a, b, c be pairwise rela
tively prime integers not divisible by p. Then there exist integers xo, Yo, and 
zo, not all divisible by p, such that 

ax~ + bY5 + cZ5 == a (mod p). 

PROOF: This is a special case of a famous theorem due to Chevalley and 
Warning. It could be proved more directly, but we give a proof that works 
in the general case, which makes it somehow the "right" proof. 

As x, y, and z run over the integers between a and p -1 (which, since we 
are working modulo p, is all we need to worry about), there are p3 different 
triples (x, y, z). Let's try to count how many of these are solutions of 

aX2 + by2 + cZ2 == a (mod p). 

For that, we use a dastardly trick: notice that 

(mod p) if (x, y, z) is not a solution 

(mod p) if (x, y, z) is a solution 

This is because, by Fermat's Little Theorem, we have n P - 1 == 1 (mod p) 
whenever n -=1= a (mod p). This means that if we let N be the total number 
of non-solutions, then 

N == L (ax2 + by2 + cz2)p-l (mod p), 
(x,y,z) 

where each of x, y, and z ranges through the numbers from a to p -1. Now, 
when we expand these powers, we are going to get an equation representing 
N as a sum of a bunch of sums of the form 

L exx2iy2j z2k 

(x,y,z) 

with 2i + 2j + 2k = 2(p - 1) and ex E Z. We claim that each one of these sums 
is zero modulo p. To see this, note that we must certainly have that one of 
2i, 2j, and 2k is less than p - 1 (if they were all 2': p - 1, then the sum would 
be 2': 3(p - 1), which it isn't). Say 2i < p - 1 (the argument is the same in 
the other cases). Then we can rewrite our sum as 
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Now we invoke a little lemma: 

Lemma 3.5.4 Let n be an integer, 0 :S: n < p - 1. Then 

p-l 

Lxn == 0 (mod p). 
x=o 

Assuming the lemma for now (the proof will come later), we see that 
the inner sum in the last formula is always congruent to zero modulo p. It 
follows that N == 0 (mod p). In other words, the number of triples that are 
not solutions is divisible by p. Since the total number of triples is p3, we also 
get that the number of triples that are solutions is divisible by p. 

But we already know one solution: x = y = z = O! In other words, the 
number of triples which are solutions is at the same time divisible by p and 
at least 1. That means there must be more than one solution, which means 
there must be a solution (x, y, z) where not all three components are divisible 
by p, which is what we claimed. 0 

To be completely happy, we just need to prove the lemma, which12 we'll 
let the reader have some fun with. 

Problem 126 Prove the lemma. (Hint: remember that the integers modulo p form 
a field, with all sorts of nice properties. Note: if n = 0, the sum seems to refer to 0°; 
read this as simply a synonym for 1.) What is the sum congruent to for other exponents 
n? 

What we know, then, after the proposition, is that when p f 2abc there 
always are "good" solutions (Le., solutions that are "non-trivial mod p") of 
the congruence 

aX2 + by2 + cZ2 == 0 mod p. 

Once we know that, it's easy to settle the question in Qp: let (xo, Yo, zo) be 
a "solution mod p" as in the proposition; we know xo, Yo, and Zo are not all 
divisible by p; suppose p f Xo (otherwise, permute the names). Look at the 
equation 

aX2 + bY5 + cZ5 = 0 

(in other words, replace the variable Y by the integer Yo, and similarly Z 
by zo). This is now a polynomial in one variable, and we know that Xo is a 
solution modulo p. Given our assumptions, Hensel's lemma now tells us that 
there is an x E Zp which is a root of this equation. But then we've done it: 
(x, Yo, zo) is a non-trivial solution in Qp of the original equation. The upshot: 

Corollary 3.5.5 If p is an odd prime that does not divide abc, then the 
equation 

aX2 + by2 + cZ2 = 0 

has a non-trivial solution in Qpo 

12you saw this coming, no? 



3.5 Local and Global 83 

Problem 127 Work out the details of the application of Hensel's lemma which we 
breezed by above. 

Problem 128 At which points in the above argument did we use the assumption that 
p f abc? 

That handles almost all the primes, but we still have to look at what 
happens when p = 2 and when p divides one of the coefficients (we agreed 
above that we can assume that no one prime divides two of the coefficients). 

3. Suppose p = 2, and a, b, and c are all odd. In this case, we will need 
some special condition to guarantee that there are solutions in Q2. Suppose 
a solution (x, y, z) with x, y, z E Q2 exists. We can clearly assume that 
max{lxl2, lyl2, Iz12} = 1, i.e, that x, y, and z are 2-adic integers which are 
not all in 21:2. (Given a triple that works, multiply by a power of 2 to get 
this.) 

Reducing mod 21:2, and remembering that the coefficients are all odd, we 
see that exactly two of x, y, and z will be 2-adic units, and the other will be 
divisible by 2. Suppose that y and z are units. Now, the square of a 2-adic 
unit will belong to 1 + 41:2, while the square of an element in 21:2 will belong 
to 41:2. So, looking mod 41:2, we get that 

b + c == 0 (mod 4). 

If instead of x being the non-unit, either y or z is, then we get a similar 
condition involving two other coefficients of the equation. 

In other words, if p = 2, 2 t abc, and there is a solution in Q2, then the 
sum of two of the coefficients of the equation must be divisible by 4. 

It turns out that this is also sufficient: 

Problem 129 Suppose a, b, and c are all odd, and the sum of two of them is divisible 
by 4. Show that the equation 

has a non-trivial solution in Q2. (Hint: You'll need an argument using some form of 
Hensel's lemma, and it'll have to be one that can handle the derivative being divisible 
by 2.) 

4. Suppose p = 2, and one of the coefficients is even. We'll leave this and 
the next one to the reader: 

Problem 130 Suppose p = 2, and one of a, b, and c is even. Show that if there 
exists a non-trivial solution ofaX2 + by2 + cZ2 = 0 in Q2, then either the sum of two 
coefficients or the sum of all three coefficients will be divisible by 8. Show that this 
condition is also sufficient to guarantee that a non-trivial solution exists. 

5. Suppose p i- 2 and a is divisible by p. 
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Problem 131 Suppose p #- 2 and a is divisible by p. Show that if there exists a 
non-trivial solution ofaX2 + by2 + cZ2 = 0 in Qp, then there must exist an integer 
r E Z such that 

b + r2 c == 0 (mod p). 

(Another way of putting this is: -blc is a quadratic residue modulo p.) Show that this 
condition is also sufficient. 

Putting all of this information together, we now have conditions that 
guarantee, for each p, that there are solutions in Qp. Using Hasse-Minkowski, 
we get: 

Proposition 3.5.6 Let a, b, and c be pairwise relatively prime square-free 
integers. The equation 

aX2 + by2 + cZ2 = 0 

has non-trivial solutions in Q if and only if the following conditions are sat
isfied: 

i} a, b, and c are not all positive or all negative. 

ii} for each odd prime dividing a, there exists an integer r E Z such that 
b+r2c == 0 (mod p), and similarly for the odd primes dividing band c. 

iii} if a, b, and c are all odd, then there are two of them whose sum is 
divisible by 4. 

iv} if a is even, then either b + c or a + b + c is divisible by 8 (and similarly 
if one of the others is even). 

A direct proof of this special case of the theorem can be found in chap
ters 3-5 of [Cas91]. The strategy of the proof is to use conditions (ii), (iii), 
and (iv) and Minkowski's "geometry of numbers," to show that one can find 
a solution (x, y, z) that satisfies the inequality 

lalx2 + Ibly2 + Iclz2 < 4labcl. 

(Here I I = I 100 is the "usual" absolute value.) This equation defines an 
ellipsoid in :lR3 , and the number of triples (x, y, z) of integers satisfying this 
condition is finite, so that we can easily run through all of them (on a com
puter, probably) and find a solution. In other words, Cassels' argument in 
[Cas91] goes further than merely giving an existence result: it actually gives 
us the means to find the solution. 

Problem 132 The reader who was very attentive to the wording of that last para
graph may have noticed one other feature of Cassels' proof that is worth remarking 
on: condition (i) is never used in the proof. This is rather surprising. For example, it 
means that if we know that the equation has a solution in Qp for every prime p, then 
it has a solution in R. Or, in more elementary and more dramatic terms, it says that 
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three integers a, b, and c satisfying conditions (ii), (iii), and (iv) cannot all have the 
same sign. Would you have guessed that something like that was true? 

Can you speculate about what might be going on here? (Comment: these are deep 
waters, but it's always worth the effort to think a little about things like this.) 

For equations of degree higher than two, it is unlikely that anything as 
strong as the Hasse-Minkowski Theorem can be true. In fact, in many cases 
one has counterexamples that show that one may have local solutions every
where and still have no global solutions. Still, even in situations where this 
strong form of the local-global principle is false, the basic idea that getting 
local information everywhere should give global information often remains 
useful. For example, in the case of cubic equations, it is not true that the 
existence of local solutions everywhere guarantees the existence of global solu
tions; nevertheless, there are still strong connections (or at least one suspects 
so). For example, there is a conjecture, due to Birch and Swinnerton-Dyer, 
that says, when looked at from this angle, that the quantity of global so
lutions can be determined in terms of local information. The conjecture is 
widely believed to be true, and offers one example of how the local-global 
principle remains one of the fundamental ideas of modern number theory. 
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In the field of p-adic numbers we have an object that in many ways is anal
ogous to the field of real numbers: it is a field with an absolute value, and it 
is complete with respect to the metric given by that absolute value. In fact, 
the similarities go deeper: lR and the various Qp are completions of Q, hence 
contain Q as a dense subset; they are all locally compact; none of them are 
algebraically closed. 

These similarities all suggest that much of what is usually done in lR can 
be extended to Qp. In particular, the basic structures of the calculus should 
all extend. The goal of this chapter is to examine what form these basic ideas 
take in the p-adic context. The central theme will be the theory of infinite 
series, which we will use to construct a number of different functions on Qp 
which imitate the classical transcendental functions. 

The reader will probably remark on the fact that our "elementary anal
ysis" focuses on power series, touching only lightly on the derivatives and 
completely ignoring the integrals that played such a large role in everyone's 
Calculus classes. As far as derivatives are concerned, the main reason for this 
is simply that derivatives are much less interesting in a p-adic context than 
they are in real analysis. In particular, the fact that the mean value theorem 
does not hold means that simply working with differentiable functions will 
usually not be good enough. Functions defined by power series are nicer. 

Integration is a different story entirely. It is certainly possible to construct 
a good p-adic theory of integration. This turns out, however, to be rather 
subtle, and we have chosen not to pursue it. Students who are interested may 
find a beginning in Chapter II of [Kob84], where a kind of p-adic integration 
is used to attack interpolation problems. 

Before we go on, we should also note that while there are many similar
ities between lR and the Qp, there are also rather large differences; noticing 
them at this point will prepare us for the changes to come later. To begin 
with, lR is an ordered field: there is a well-defined notion of "bigger than" 
that is nicely compatible with the operations. This is certainly not true for 
the Qp. Secondly, lR is archimedean (more precisely, the absolute value on lR 
is), while the Qp are all non-archimedean. This means, in particular, that lR 
is connected as a metric space, while Qp, as we saw above, is totally discon
nected. This means, for example, that there is no clear notion of an interval 
in Qp, or any analogue of the notion of a curve. It is these contrasts that will 
cause most of the differences between real and p-adic analysis. 
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4.1 Sequences and Series 

We begin by studying the basic convergence properties of sequences and 
series. The most important fact has already been noted: Qp is a complete 
field, so that every Cauchy sequence converges. Furthermore, notice that all 
of the axioms that hold for the absolute value in JR still hold in Qp (being non
archimedean is an extra property). Hence, most of the basic theorems still 
hold in the p-adic context, with the same proofs! We will leave it to the reader 
to look over the basic theory in her real analysis text, and emphasize rather 
the points where the non-archimedean property introduces serious differences 
from the real case. Perhaps the most important such difference is the fact, 
also noted above, that in a non-archimedean context it is easier to test for 
the Cauchy property. 

Lemma 4.1.1 A sequence (an) in Qp is a Cauchy sequence, and therefore 
convergent, if and only if it satisfies 

lim Ian+! - ani = O. 
n--->oo 

PROOF: This is Lemma 3.2.2, which was stated for Q and the p-adic ab
solute value, but whose proof clearly only uses that the absolute value is 
non-archimedean, and hence works just as well for sequences in Qp. D 

The theory of sequences and their convergence properties is pretty much 
identical to the theory over JR, except for this Lemma. Here are a few exam
ples: 

Problem 133 Decide if the following sequences converge in Qp, and find the limit of 
those that do: 

• an = n! 

• an = n 

• an = lin 

• an =pn 

• an = (l+p)pn 

Problem 134 Let an be a convergent sequence in Qp. Show that either lim lanl = 0 
or there exists an integer M such that lanl = laMI for every n :::: M. In words, the 
sequence of absolute values of a convergent sequence either tends to zero or becomes 
constant for large enough n. 

As for sequences, so for series: the classical theory still holds. For exam
ple, the following is still true: 

Problem 135 Let an E Qpo Show that absolute convergence implies convergence, 
i.e., that if the series of absolute values I: lanl converges (in lR), then the series I: an 
converges in Qpo 
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This is an important and useful result in real analysis. In the p-adic 
context, however, Lemma 4.1.1 gives us something much better: 

DO 

Corollary 4.1.2 An infinite series L an with an E Qp is convergent if and 

only if 

in which case we also have 

n=O 

lim an = 0, 
n-+DO 

PROOF: A series converges when the sequence of partial sums converges. 
Now, the n-th term an is exactly the difference between the n-th and the 
(n - 1 )-st partial sums; if it tends to zero, it follows from the lemma that the 
sequence of partial sums is a Cauchy sequence, hence is convergent. 

Finally, the estimate for the sum is a straight extension of the non-
archimedean inequality, and we leave its verification to the reader. D 

Problem 136 Check the inequality for the absolute value of the sum of a convergent 
series. 

Problem 137 The corollary flies in the face of many admonitions in calculus class: 
in JR, the fact that the general term tends to zero is not a sufficient condition for 
convergence. In other words, the corollary is false in R Give an example of a series in 
JR whose general term tends to zero, but which does not converge. Give another. 

The upshot is that it is much easier to decide on the convergence of an 
infinite series in the p-adic context than over R This has the effect of making 
the theory of series in Qp generally a lot simpler than the classical theory. 
We'll study in detail one example of this: a theorem1 about double series and 
reversing the order of summation. We want to consider a "double sequence" 
bij of p-adic numbers and ask about the two series we get by summing either 
first in i, then in j or the other way around. For this to make sense, we need 
that the bij tend to zero when we fix one index and let the other go to infinity 
(otherwise the series won't converge). We'll say that 

lim bij = 0 
t-+DO 

uniformly in j 

if given any positive number E: we can find an integer N which does not depend 
on j such that 

IThis is a variant of a theorem given in [Cas86J; I learned it from Keith Conrad. 
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In other words, for each j the sequence bij tends to zero when i ----> 00, and 
the convergence is "at the same rate" for all j. The first thing we need is a 
lemma: 

Lemma 4.1.3 Let bij E Qlp, and suppose that 

i) for every i, lim bij = 0, and 
J->OO 

ii) .lim bij = ° uniformly in j. 
'->00 

Then given any c > ° there exists an integer N depending only on c such that 

PROOF: Given £, the second condition says that we can choose No, depending 
on c: but not on j, such that Ibijl < c if i 2: No. The first condition is weaker: 
it says that for each i we can find N I (i) (the notation emphasizes that it does 
depend on i) such that if j 2: NI(i) we have Ibijl < c. Now take 

N = N(c) = max(No, NI(O), NI (l), ... , NI(No - 1)). 

This N does the trick: if max(i, j) 2: N, then either i 2: No, and we know 
Ibijl < c regardless of what j is, or i < No and j 2: N, in which case i must 
be equal to one of 0, 1, ... , No - 1 and j will be bigger than the appropriate 
N I , giving Ibijl < c again. 0 

The crucial point is that the fact that bij ----> ° uniformly in j allows us 
to restrict to only a finite number of cases in which we have to use the other 
condition. Now we can go on to prove our theorem on double series. 

Proposition 4.1.4 Let bij E Qlp, and suppose that 

i) for every i, .lim bij = 0, and 
J->OO 

ii) lim bij = ° uniformly in j. 
'--->00 

Then both series 

and 

converge, and their sums are equal. 

PROOF: From the lemma, we know that given c we can choose N such that 
if max(i, j) 2: N then Ibijl < c. In particular, bij tends to zero for every i 
when j ----> 00 and vice-versa, which means that the internal sums 

00 00 

and 
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converge (the first for all i, and the second for all j). In addition, for i :::: N 
we have, by Corollary 4.1.2, 

00 

Lbij :::; maxlbijl < c; 
J 

j=O 

similarly, for j :::: N we have 

In particular, we see that 

00 

and lim Lbij = 0, 
J ..... OO 

i=O 

so that both double series converge. 
It remains to check that the sums are equal. For that, we continue to use 

Nand c chosen as above, so that I bij I < c when either i or j is :::: N, and we 
use over and over the fact that in a non-archimedean field a bound on each 
term in a sum gives a bound on the sum itself; this is just the ultrametric 
inequality Ix + yl :::; max(lxl, lyD, as generalized to series in Corollary 4.1.2. 

Begin by noticing that 

Now, if j :::: N + 1, we have Ibij I < c for every i; by the ultrametric inequality, 
00 

it follows that L bij < c for every i, and then (use the ultrametric 
j=N+l 

inequality again!) 

Similarly, we get an estimate for the other summand: 
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and one more application of the ultrametric inequality allows us to conclude 
that 

Of course, reversing i and j we get a similar inequality for the other double 
sum. Finally, since clearly one can reverse the order of summation in the 
finite sum, we can use the ultrametric inequality once again to conclude that 

But since c was arbitrary it follows that the two sums must be equal. 0 

What this result says is that if the bij tend to zero in a sufficiently uniform 
way, then their sum can be taken in any order. This result will prove quite 
useful in our later applications. 

Problelll 138 How important is the ultra metric inequality in the proof? What is the 
best result along these lines in real analysis? 

The next two problems show that series can be added and multiplied in 
the "natural" way. 

Problelll 139 Show that if a = L: an and b = L: bn are convergent, and we set 

then the series L: en is convergent and has sum a + b. 

Problelll 140 Show that if a = L: an and b = L: bn are convergent, and we set 

n 

en = L aibn-i, 
i=O 

then the series L: en is convergent and has sum abo 

4.2 Functions, Continuity, Derivatives 

The basic ideas about functions and continuity remain unchanged when we 
go to the p-adics, since after all they depend only on the metric structure. 
There are no intervals to work with (in fact, no non-trivial connected sets at 
all), so usually our functions will be defined in (open or closed) balls. Recall 
that we write B(a,r) for the open ball with center a and radius rand B(a,r) 
for the closed ball with center a and radius r. The definition of continuity is 
exactly the same as before: 
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Definition 4.2.1 Let U c Qp be an open set. A function f : U -. Qp is 
said to be continuous at a E U if for every c > 0 there exists a ij > 0 such 
that, for every x E U, 

Ix - al < ij => If(x) - f(a)1 < c. 

The basic results about continuity are true in all metric spaces, and hence 
are true here too. For example, if U is compact (and remember, in Qp it's 
perfectly possible for a set to be both open and compact) and f is continuous 
at every point of U, then f is uniformly continuous. 

Problem 141 Is there a p-adic analogue of the intermediate value theorem? 

Derivatives are a bit more interesting, if only because it'll turn out that 
they don't work as well as in the classical case. It certainly makes perfect 
sense to define derivatives of functions f : Qp ---t Qp in the usual way: 

Definition 4.2.2 Let U c Qp be an open set, and let f : U ---t Qp be a 
function. We say f is differentiable at x E U if the limit 

f'(x) = lim f(x + h) - f(x) 
h->O h 

exists. If f' (x) exists for every x in U we say f is differentiable in U, and 
we write f' : U ---t Qp for the function x f-+ f'(x). 

To some extent, the derivative works as expected. For example, we can 
show that differentiable functions are continuous, in exactly the same way as 
we do it over lR or C. Along the same vein: 

Problem 142 Let n E Z. What is the derivative of the function Qp -----t Qp given by 
x f-> xn? 

It is natural to wonder why the derivative seems to play such a minor 
role in p-adic analysis. One of the reasons for this has to do with the mean 
value theorem, which is the linchpin of the elementary theory of differentiable 
functions. If we try to look for a p-adic version of the theorem, we run into the 
immediate (not-too-serious) difficulty of deciding what it would say. After all, 
the classical theorem says that given a and b in the domain of a continuously 
differentiable function, there exists a number ~ between a and b such that 

feb) - f(a) = f'(O(b - a). 

The problem, of course, is that "between" doesn't seem to mean anything in 
the p-adic context, since Qp is not an ordered field. 

But this initial difficulty is easily resolved. In lR, we can redefine "be
tween" by saying that ~ is between a and b if we have 

~ = at + b(l - t) for 0 :::; t :::; 1 
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(draw a picture!). In fact, if we want a mean value theorem that works in 
the field of complex numbers, we will have to do something like this anyway. 

So here is an attempt at a minimal p-adic version of the mean value 
theorem: 

What a p-adic mean value theorem might say: If a function f(X) is 
differentiable with continuous derivative on Qlp, then, for any two numbers a 
and b in Qlp there exists an element ~ E Qlp of the form 

~ = at + b(l - t) for some t, It I ::; 1 

for which we have 
feb) - f(a) = f'(~)(b - a). 

Unfortunately, things aren't that simple. 

Proposition 4.2.3 The ''p-adic mean value theorem" we just stated is false. 

PROOF: Take f(x) = xP - x, a = 0, b = 1. Then f'(x) = pxp - 1 - 1 and 
f(a) = feb) = O. What the proposed theorem would say, then, would be 
that there exists a ~ of the above form such that p~p-l - 1 = O. But any 
~ = at + b(l - t) = (1 - t) with t E Zp (which is what It I ::; 1 says) must 
itself belong to Zp. But then p~p-l - 1 is clearly a unit in Zp (it belongs to 
1 + pZp), and therefore cannot be zero. 0 

This makes things much less nice than in the classical case. For example, 
the next problem asks the reader to show that our most basic intuitions about 
derivatives fail. 

Problem 143 Construct a function f : Qp ----> Qp which is differentiable, has zero 
derivative everywhere, but is not locally constant. Such functions are sometimes called 
"almost constant." 

Problem 144 Show that the chain rule is still true in Qp. Use this fact to show that 
if f has zero derivative everywhere and 9 is any continuously difFerentiable function, 
then both fog and go f have zero derivative everywhere. Explain why this means that 
there are a great many "almost constant" functions. 

In particular, it follows that two functions which have the same derivative 
do not need to differ by a constant. This shows that knowing that a function 
is differentiable isn't as useful in the p-adic context as it is classically. This is 
one of the reasons why we concentrate on functions defined by power series 
instead. 

Of course, the function we used in the example above is a polynomial, so 
nothing will rescue the "p-adic mean value theorem" we tried to formulate. 
Nevertheless, it is possible to prove an analogue of the mean value theorem 
for functions defined by power series, provided one restricts to the case when 
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Ib - al is small enough. See A. Robert's account of this in [Rob95]. For 
more information on differentiation in a p-adic context, see K. Mahler's book 
[Mah73]. 

4.3 Power Series 

In real analysis, power series 

(X) 

offer a convenient way of representing functions, and in particular can be used 
to define several important functions, such as the exponential and trigono
metric functions. As one might expect, the p-adic theory turns out to be 
quite similar to the classical version, except that some of the tricky points 
become a lot simpler to handle. On the other hand, the non-archimedean 
property does introduce a few surprises. The biggest of these surprises is the 
fact that the relation between the formal composition of power series and the 
composition of the functions they define becomes more complicated in the 
p-adic context than it is in the classical situation. Because this is such an 
unexpected development, we spend quite a bit of time on it. 

The next few sections explore the main ideas about power series and 
functions defined by power series, focusing, in the end, on the p-adic versions 
of the logarithm and the exponential. The main influences on our treatment 
are [Cas86], [Has80], and a set of unpublished notes by Keith Conrad. We 
have stated most of our results for power series in X, but of course they 
remain true for power series in (X - a), for the usual reasons. 

Consider, then, a power series 

(X) 

f(X) = :Lanxn. 
n=O 

Given x E Qp, we want to consider f(x), which is2 the series L: anxn; we 
already know that this converges if and only if lanxnl -- O. As in the classical 
case, the set of all such x (which we call the region of convergence) is a disk. 

2In this section and the following ones, we adopt the convention that X represents an 
indeterminate, while x usually represents a p-adic number. Hence, f(X) in this statement 
is to be thought of as the formal power series itself, while f(x) is the numerical series 
we obtain by substituting x for X. It makes no sense to discuss convergence of f(X): 
the series is just there. It does make sense to discuss the convergence of f(x); whether it 
converges or not will depend on x. When it does converge, we will write f(x) for both the 
numerical series and its value; this should normally not cause any confusion. 
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00 

Proposition 4.3.1 Let f(X) = L anXn , and define 
n=O 

1 

p= limsup Viani' 

where we use the usual conventions when the limit is zero or infinity, so that 
o ::; p ::; 00. 

i) If p = 0, then f(x) converges only when x = O. 

ii) If p = 00, then f(x) converges for every x E Qp. 

iii) IfO < p < 00 and limn ...... oo lanlpn = 0, then f(x) converges if and only 
if Ixl ::; p. 

iv) If 0 < P < 00 and I an I pn does not tend to zero as n goes to infinity, 
then f(x) converges if and only if Ixl < p. 

PROOF: We already know that the region of convergence is 

so that the point of the theorem is to translate this into more precise infor
mation. First of all, it is clear that f(O) converges. Next, if Ixl < p, then it 
is easy to see (if nothing else, it follows from the theory of powers series over 
JR.) that 

which is a power series in JR., converges, which implies that the p-adic series 
does too. Similarly, if Ixl > p, it is easy to see that lanllxln cannot tend to 
zero when n tends to infinity: the definition of p implies that for infinitely 
many n's, lanl is close to l/pn, and, since Ixl > p, (Ixl/p)n gets arbitrarily 
large as n grows. Finally, the statements about what happens when Ixl = p 
are immediate from Corollary 4.1.2. 0 

As in the archimedean case, the number p is called the radius of conver
gence of the series. Notice that, in contrast to what is true in the classica13 

case, what happens at the points on the "boundary" of the region of con
vergence (i.e., the points with Ixl = p) is rather simple: either the series is 
convergent at all such points or at none of them. (On the other hand, recall 
that the points such that Ixl = p are not really the boundary of the open 
disk!) 

30ver JR, the region of convergence may include none, both, or only one of the endpoints 
of the interval -p < x < p. Over C, it is worse: Ixl < p is a disk, and the set of points on 
the boundary for which the series converges can be pretty complicated. 
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Problem 145 Find the region of convergence of the following p-adic power series: 

i) I:pn xn 
ii) I:p-n xn 

iii) I:n!Xn 

One of the nice things about starting from formal power series is the fact 
that several of the operations we want to do with power series make sense 
at the formal level. Let's look at these formal operations, and then ask the 
important question: how do the formal properties translate to properties of 
the functions defined by the power series? 

We start with the easiest operations: given two formal power series f(X) 
and g(X), we can consider their sum and their product. If 

00 00 

f(X) = LanXn and g(X) = L bnXn , 
n=O n=O 

then we define 
00 

(f + g)(X) = L(an + bn)xn 
n=O 

and 

Notice that if we want to think of these definitions as the result of actually 
adding or multiplying the series, they imply a lot of reordering and recom
bining of terms! 

As we have defined it, this is a formal operation only. Of course, we'd like 
to know that it actually works when we plug in numbers for X. It's not too 
hard to see everything works as expected: 

Proposition 4.3.2 Let f(X) and g(X) be formal power series, and suppose 
x E Qp- If f(x) and g(x) both converge, then: 

i) (f + g)(x) converges and is equal to f(x) + g(x), and 

ii) (fg)(x) converges and is equal to f(x)g(x). 

PROOF: Basically, all that's needed is an appeal to the results you proved 
for numerical series in problems 139 and 140. 0 

Problem 146 Fill in the details of the proof. 
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Having had such success with adding and multiplying series, we can be 
more ambitious, and consider the composition of formal series. Suppose we 
have two formal series 

00 00 

f(X) = LanXn and g(X) = L bnXn, 
n=O n=O 

and that bo = 0 (another way of saying that would be to say g(O) = 0). We 
want to check that it makes sense to define the composition h(X) = f(g(X)) 
of the two series. This should be 

That looks like an awful mess, but in fact we can (working formally, of 
course4 ) reorganize it into a well-behaved power series. The idea is this: 
since g(X) has no independent term, g(X)2 starts with a term of degree 2, 
g(X)3 starts with a term of degree 3, and so on. So, when we try to work 
out what the coefficients of h(X) = f(g(X)) = ~cnxn should be, each 
coefficient only requires a finite amount of work. 

• The zeroth coefficient is just Co = ao. 

• The first coefficient only requires that we look at the first two terms ao + 
alg(X), and therefore Cl = albl . 

• The second coefficient requires that we look at the first three terms 

aO + alg(X) + a2g(X)2 = ao + al(blX + b2X 2 + ... ) 
+ a2(brX2 + ... ), 

and so C2 = alb2 + a2bi· 

• For the third coefficient, look at 

aO + alg(X) + a2g(X)2 + a3g(X)3 = ao + al(blX + b2X 2 + b3X 3 ... ) 

+ a2(brX2 + 2blb2X 3 + ... ) 
+ a3(brX3 + ... ) 

so that C3 = alb3 + 2a2blb2 + a3bi· 

• And so on! One can clearly find en for every n. 

4We could also think like this: if we use the X-adic topology, the completion of the 
ring CQlp[X] of polynomials with coefficients in CQlp is exactly the ring of power series with 
coefficients in CQlp. In the X-adic topology, the power series 

ao + alg(X) + a2g(X)2 + ... + ang(X)n + ... 
converges, and its sum is the power series we're calling h(X). 
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Problem 147 Can you find a general formula for the en? 

So we know that given two formal power series f(X) and g(X) with 
g(O) = 0, we have a formal power series h(X) = f(g(X)) which is their 
formal composition. Now we need to ask questions about convergence, and 
those are not as easy to answer. The point is that plugging a number x 
into the power series h(X) might give a different answer from what one gets 
by first plugging x into g(X) and then plugging the result into f(X). One 
might suspect that there are problems simply by contemplating the amount 
of rearranging that's going on in our definition of the composite series h(X). 
In fact, it turns out we need to be very careful. Here's the theorem: 

Theorem 4.3.3 Let f(X) = L anxn and g(X) = L bnxn be formal power 
series with g(O) = 0, and let h(X) = f(g(X)) be their formal composition. 
Suppose that 

i) g(x) converges, 

ii) f(g(x)) converges (this means: plugging the number to which g(x) con
verges into f(X) gives a convergent series), 

iii) for every n, we have Ibnxnl :s; Ig(x)1 (in other words, no term of the 
series converging to g(x) is bigger than the sum). 

Then h(x) also converges, and f(g(x)) = h(x). 

PROOF: (Following [Has80, chapter 17].) We have 

()() ()() 

f(X) = LanXn and g(X) = L bnxn. 
n=O n=1 

Let 
()() 

g(x)m = L dm,nxn . 
n=m 

It's not hard to work out the dm,n by using the formula for the product of 
formal power series: dm,n = 0 if n < m, and, for any n ~ m, 

dm,n = 

(that formula looks uglier than it really is: basically, take all the products 
of m-tuples of b/s whose indices add up to n). This allows us to write 
h(X) = f(g(X)) explicitly: 

h(X) = ao + ~ (1;1 amdm,n) Xn. 
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Now let's start thinking about convergence. First of all, since g(x) con
verges, we can use Proposition 4.3.2 to conclude that the formal series g(x)m 
converges when we plug in X = x, and in fact converges to g(x)m; in other 
words, 

00 

g(x)m = L dm,nxn . 
n=m 

More interesting is the fact that the special assumption we made about g(X) 
is still true for the series g(x)m: for every n, we have 

To see this, note first that Ig(x)ml = Ig(x)lm. Now look at the general term 
Idm,nxnl. If n < m, then Idm,nxnl = 0 and there is nothing to prove. On the 
other hand, if n 2:: m, then the ultrametric inequality gives 

where the maximum is once again taken over all m-tuples (il' i2, ... , im ) 

such that h + i2 + ... + im = n. But we know, from the hypothesis on 
g(X), that IbijXij I ::; Ig(x)1 for every ij; multiplying all these inequalities 
gives Idm,nxnl ::; Ig(x)ml, which is the inequality we want. 

So now we know that g(x) converges, that powers of g(x) converge, and 
that both the series for g(x) and for g(x)m satisfy the extra condition that 
no term is larger than the final sum. We also know, from our assumptions, 
that f(g(x)) converges, that is, that am(g(x))m tends to zero as m grows. 
We have 

00 00 

= ao + L L amdm,nxn 
m=ln=m 

(where the order of the summations is crucial, of course), and, on the other 
hand, 

These series are obtained from each other by reversing the order of the sum
mation, so what we need to do is check that this is legal and that both series 
will have the same sum. That's what Proposition 4.1.4 is for! 

To apply the proposition, we need to show that the general term amdm,nxn 
tends to zero sufficiently uniformly. So let's study that general term. The 
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crucial thing is to notice that we can use the fact that g(x)m is larger than 
any term of the series to get a uniform bound: 

where the important thing is that the right-hand side is independent of n. 
Given c, we can, since amg(x)m --+ 0, choose N such that lamg(x)ml < c if 
m ~ N. This shows part of what we want: 

lim amdm,nxn = 0, 
m--+oo 

uniformly in n. 

On the other hand, for each m we know that the series 

00 

g(x)m = 2:= dm,n xn 
n=O 

converges, and it follows (after multiplying by am) that, for every m, 

That's what we need to be able to apply Proposition 4.1.4 and conclude both 
that the series for hex) converges and that its sum is equal to f(g(x», which 
is what we needed to prove. 0 

The extra assumption on g(X) is essential! In other words, an equality of 
formal power series that involves composition does not need to imply equality 
of the functions unless we can check this extra condition. We will discuss 
an important example of this, involving the logarithm and the exponential 
functions, later in this chapter. 

Problem 148 If you can't wait, consider the following example in <Ql2. Let 

X2 xn 
f(X) = 1 + X + 2f + ... + --;;:! + ... 

be the usual formal series for the exponential, let 

g(X) = 2X2 - 2X, 

and let 
heX) = f(g(X)). 

We will show later that f(x) converges for every x E 4Z2 and diverges otherwise. Since 
g(X) is a polynomial, g(x) converges for every x. In particular, suppose we take x = 1. 
Then g(l) = 0 and so f(g(l)) = 1. 

i) Check that the first two conditions in the theorem are satisfied, but the third is 
not. 

ii) Let heX) = 2:anXn. Show that if n ~ 2 then v2(an) ~ 1 +n/4, and conclude 
that hex) converges for all x E Z2. (This part is rather hard.) 
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iii) By computing out the first few terms of h(X) and using the estimate for the 
valuation of the an, show that h(1) == 3 (mod 4). 

iv) Conclude that h(1) oj; f(g(1». 

It is interesting to remark that in this case classical analysis is actually easier: 
if the radius of convergence of f(X) is p and Ig(x)1 < p, then h(x) converges 
and we have f(g(x» = h(x). See, for example, Proposition 5.1 in Section 2 
of Chapter 1 of [Car95]. 

Problem 149 One other operation with power series which we didn't mention is 
differentiation. Given a power series f(X) = L: anXn, we define its formal derivative 
to be f' (X) = L: nanXn- 1 . Show that this has the usual properties of a derivative: 

i) (f + g)'(X) = f'(X) + g'(X) 

ii) (fg)'(X) = f'(X)g(X) + f(X)g'(X) 

iii) If h(X) = f(g(X», then h'(X) = f'(g(X»g'(X) 

Notice that these are equalities of formal series! 

4.4 Functions Defined by Power Series 

We will use power series to define functions. In other words, given a power 
series f(X) we will think of it as defining a function whose domain is the 
set of x for which f(x) converges. Just as in the classical case, the functions 
that are defined by power series have nice properties. The simplest one is 
continuity. 

Lemma 4.4.1 Let f(X) = E anxn be a power series with coefficients in 
Qp, and let 'lJ c Qp be its region of convergence, i.e., the set of x E Qp for 
which f(x) converges. The function 

defined by x f---+ f (x) is continuous on 'lJ. 

PROOF: Identical to the proof over lR. o 

Problem 150 Prove the lemma. In R, continuity at the endpoints of the interval of 
convergence is a problem. Make sure that your p-adic proof handles those points as 
well. 

As in the classical case, we can change the center of the series expansion, 
i.e., to re-write our function as a power series in (X - a) for any a in the 
region of convergence. In the classical case, the resulting series can (usually 
does) have a different region of convergence than the original series, and this 
fact is one of the ways to obtain "analytic continuations." Surprisingly, this 
never happens in the p-adic case. 
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Proposition 4.4.2 Let f(X) = L anxn be a power series with coefficients 
in Qp, and let a E Qp be a point for which f(a) converges. For each m ::::: 0, 
define 

and consider the power series 

00 

g(X) = L bm(X - a)m. 
m=O 

i) The series defining bm converges for every m, so that the bm are well
defined. 

ii) The power series f(X) and g(X) have the same region of convergence, 
that is, f(>..) converges if and only if g(>..) converges. 

iii) For any>.. in the region of convergence, we have g(>..) = f(>..). 

PROOF: Claim (i) is easy to see: since a belongs to the region of convergence 
for f(X), we get (for fixed m) 

I (:)anan-ml ::; lanan-ml = lal-m ·Iananl -> 0, 

which gives the desired convergence by Lemma 4.1.2. 
To show (ii) and (iii), take any>.. in the region of convergence of f(X), 

and compute 

f(>..) = L an (>.. - a + a)n = L L (:)anan- m (>.. - a)m. 
n n m~n 

The last sum looks a lot like a partial sum for g(>..), except that it needs to be 
re-ordered. For that, we use Proposition 4.1.4. To check that the condition 
is satisfied, set 

_ {(:)anan- m (>.. _ a)m 
f3nm -

o 

ifm::;n 

ifm > n 

We need to check that the sequence f3nm satisfies the conditions in Proposi
tion 4.1.4. Note first that 

lf3nml = I (:)anan-m(>.. - a)ml ::; lanan- m (>.. - a)ml ' 
so that the problem is bounding this last expression. To do that, recall that 
the region of convergence is a (closed or open) disk of some radius p; since 
both >.. and a are in the region of convergence, there exists a radius Pl such 
that 
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• the closed disk of radius PI is contained in the region of convergence, and 

• we have both IAI ::; PI and lal ::; Pl· 

(This dodge takes care of the question of whether the region of convergence 
is the open or the closed disk: if it is the closed disk, we can take PI = P; if 
the open, take Pl to be the larger of the absolute values of a and A, so that 
PI < p. The second choice actually works in both cases.) Then we have 

• laln-m ::; p~-m by construction, and 

• IA - aim::; max{IAI, lal}m ::; PI by the non-archimedean property. 

Going back to the terms we want to estimate, we get 

which is independent of m and tends to zero as n ----> 00. This means that 
given any c > 0 there exists an N for which l,6nml < c if n ::::: N and any m. 
This shows that ,6nm tends to zero uniformly in m. The other condition is 
easy: if m > n, we have ,6nm = 0, hence it's certainly true that for every n 
we have ,6nm ---t 0 when m ---t 00. Thus, the conditions in Proposition 4.1.4 
are satisfied, and we can reverse the order of summation. 

Changing the order of summation in the expression for f(A) gives the 
expression for g(A), so that applying Proposition 4.1.4 allows us to conclude 
that g(A) converges and is equal to f(A). This shows that 9 converges when
ever f does, and in that case their values are equal. To conclude, notice that 
we can switch the roles of 9 and f in the argument, which shows that in fact 
the regions of convergence are identical. D 

Problem 151 Before you relax from that long proof, are you sure that the smoke
and-mirrors phrase "switch the roles of g and f" is really justified? Does anything 
further need to be checked? 

Problem 152 Prove the following relative of the proposition: Let f(X) be a power 
series such that f(x) converges for Ixl < p, and suppose lal = 1 and Ibl < p. Then the 
function g(x) = f(ax+b) is given by a power series g(X) which converges for Ixl < p. 

As in the classical theory, functions which can be expressed as power 
series in a closed disk B (a, r) are called analytic on B (a, r). Functions of 
this kind in general have very nice properties, and this is also true in Qp. 
Unfortunately, the theory is not so nice as, for example, the theory over the 
complex numbers. One of the crucial reasons is the theorem we have just 
proved: we cannot get an "analytic continuation" for a function by choosing 
another center and expanding in a power series. Doing so in Qp produces 
a power series with exactly the same region of convergence, which therefore 
does not allow us to "continue" the function to a larger domain. 
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Also unpleasant is the fact that many functions are "locally analytic" for 
trivial reasons having to do with the fact that Qp, since it is non-archimedean, 
is totally disconnected. In fact, consider the function given by 

f(x) = {~ 
Since both Zp and its complement are open sets, around any point one can 
find a ball in which f (x) is constant, and hence can be written as a (constant) 
power series! One would not want to think of such a function as "analytic." 
Hence, while the set of analytic functions on a closed ball behaves well, it isn't 
clear how to move from that "local" theory to a "global" notion of analytic 
function. 

It turns out that one can get around such difficulties, and come up with a 
good concept of "analytic" functions and of "analytic continuation." Unfor
tunately, this requires quite a sophisticated approach. The resulting theory is 
developed in what is called Rigid Analytic Geometry; its foundations are due 
to John Tate, and it has become a very important branch of modern number 
theory. For an introduction to this rather difficult subject, the reader might 
look at [BGR84]. 

We will stick to simpler things. First of all, if a function is given by a power 
series it completely determines that power series. As in the classical case, 
this can be shown by using derivatives (see below), but we prove something 
stronger. Let's say a sequence {xm} converging to a limit L is stationary if 
there exists an n such that Xm = L for all m ~ n. 

Proposition 4.4.3 Let f(X) and g(X) be formal power series, and suppose 
there is a non-stationary sequence Xm E Qp converging to zero in Qp and 
such that f(xm) = g(xm) for every m. Then f(X) = g(X) (i.e., f(X) and 
g(X) have the same coefficients. 

PROOF: (This is identical to the classical proof.) Replacing the sequence 
{xm} by a subsequence if necessary, we can assume Xm =f=. 0 for all m. If 
we consider the difference heX) = f(X) - g(X) = L:anXn, then we have 
h(xm) = 0 for every m, and we want to show that an = 0 for every n. 
Suppose not; then let r be the least index for which ar =f=. 0, so that 

heX) = arXr + ar+lXr+l + ar+2Xr+2 .. . 

= Xr(ar + ar+lX + ar+2X2 + ... ) 
= Xrhl(X), 

where hI (0) = ar =f=. O. Since hI is a function defined by a power series, it 
is continuous, so hI (xm) --f ar as m --f 00 (remember that our assumption 
is that Xm --f 0); in particular, hl(xm) is non-zero for large enough m. It 
follows that h(xm) = X~hl(Xm) is non-zero for large enough m, which is a 
contradiction. 0 
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Problem 153 Suppose f(X) and g(X) are formal power series, and suppose that 
Xm is a non-constant sequence in <Qlp converging to a point x such that both f(x) and 
g(x) converge. Show that if f(xm) = g(xm) for every m, then f(X) = g(X). 

In the problem 149, we considered a "formal derivative" operation on 
formal power series. If a function is defined by a power series, we want its 
derivative to correspond to the formal derivative of the power series, and it 
does: 

Proposition 4.4.4 Let f(X) = 2:: anxn be a power series, with non-zero 
radius of convergence, and let f'(X) be its formal derivative. Let x E Qp. If 
f(x) converges, then so does f'(x), and we have 

f'e ) - r f(x + h) - f(x) 
x - h~ h . 

PROOF: (Following [Has80].) Note, first, that there are indeed elements 
h ---+ 0 for which f(x + h) converges, since the region of convergence is a 
(closed or open) ball centered at the origin. In fact, let P be the radius of 
convergence. If x = 0, any h with Ihl < P works; if x i=- 0, then any h 
with Ihl < Ixl works. (Remember that if Ihl < lxi, then Ix + hi = Ixl.) In 
particular, the limit that appears in the proposition does make sense. 

Suppose, then, that f(x) converges, which is equivalent to saying that 
anxn ---+ O. If x = 0 then it is clear that f'ex) converges. If xi=- 0, notice that 

Ina xn-ll < la xn-ll = ~Ia xnl ---+ 0 n - n Ixl n , 

and again we see5 that f' (x) converges. 
Recall that either f(X) converges in the closed ball B(O, p) or in the open 

ball B(O, p). In the first case, set PI = p. In the second case, choose PI such 
that Ixl :::; PI < p. 

Since we only care about h close to zero, we may assume, if x i=- 0, that 
Ihl < Ixl :::; Pl. Otherwise, x = 0 and we can simply assume Ihl :::; Pl. Now, 

f(x + h) = ~ an(x + h)n = ~ an to (:)Xn-mhm. 

Subtracting f(x) and dividing by h, we get 

f(x + h) - f(x) _ ~ ~ (n) n-mhm- l 
h -LLan m x . 

n=lm=l 
Now, since we have Ixl :::; PI and Ihl :::; PI, we have 

5This is one of those places where Corollary 4.1.2 really simplifies our life! 



4.4 Functions Defined by Power Series 107 

and since Pl < P we have lanlpf ----+ O. This shows that the series converges 
uniformly6in h. By a standard theorem (check your real analysis textbook!), 
this means we can take the limit term-by-term. In this case, that amounts 
to setting h = 0, which gives 

00 

f'(x) = L nanxn- l , 

n=l 

which is what we want. D 

ProbleIll 154 Let f(X) = anxn be a formal power series, and suppose f(x) con
verges. Show that for every k the k-th derivative f(k)(x) exists, and is given by 

in particular, we have 

ProbleIll 155 Can you think of any reason why one would want to write the derivative 
as above, with k! factored out? 

To demonstrate that we've actually proved quite a bit, here's an easy 
consequence of our results. As we pointed out above, it is possible for two 
p-adic functions to have the same derivative without it being the case that 
their difference is constant. That doesn't happen for functions defined by 
power series. 

Corollary 4.4.5 Suppose f(X) and g(X) are power series, and suppose that 
both series converge for Ixl < p. If f'(x) = g'(x) for alllxl < p, then there 
exists a constant c E IQp such that f(X) = g(X) + c as power series. In 
particular, f(X) and g(X) have the same disk of convergence, and we have 
f(x) = g(x) + c for all x in the disk of convergence. 

PROOF: Let f(X) = 2::anXn, g(X) = 2::bnX n , and let f'(X) and g'(X) 
be the formal derivatives. By 4.4.4 and 4.4.3, we can conclude that an = bn 
for all n ::::: 1, and the conclusion follows. D 

The next theorem we want to look at is a fundamental result about the 
zeros of functions defined by power series. 

6This is another one of those concepts from analysis. Basically, a series 2: an(h) con
verges to a sum s(h) uniformly in h if for every c we can find an N independent of h such 
that if m > N then 

IS(h) - ~ an(h)1 < c. 

In our case, we have an estimate for an(h) that doesn't depend on h, hence the convergence 
is uniform. 
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Theorem 4.4.6 (Strassman) Let 
00 

f(X) = L anXn = aD + a1X + a2X 2 + ... 
n=O 

be a non-zero power series with coefficients in Qp, and suppose that we have 
lim an = 0, so that f(x) converges for all x E 7lp . Let N be the integer 

n---+oo 

defined by the two conditions 

and 

Then the function f : tlp ---7 Qp defined by x r-t f(x) has at most N zeros. 

(The existence of N follows from the fact that the coefficients an tend to zero: 
there is a largest absolute value, and N is the index of the last coefficient for 
which the maximum is attained.) Strassman's theorem is usually proved 
using a high-powered result known as the p-adic Weierstrass preparation 
theorem. We will look at that way of doing things in Chapter 6, but for now 
we forgo that approach and give the direct proof found in [Cas86]. 

PROOF: We use induction on N. 

a) If N = 0, we must have laol > lanl for all n ~ 1, and what we want to 
prove is that in that case there are no zeros: f(x) =I- 0 for all x E 7lp . Indeed, 
if we had f(x) = 0, then 

0= f(x) = aD + alX + a2x2 + ... , 
from which it would follow that 

< 

< 

lalx + a2x2 + ... I 

maxlanxnl 
n2':l 

But this contradicts the assumption that laol > lanl for all n ~ l. 

b) To handle the induction step, we use an idea from the algebra of polyno
mials: a zero implies a factorization. Suppose that 

and 

and suppose that f(ex) = 0 for some ex E 7lp . Choose any x E 7lp- Then we 
have 

n-l 

(x - ex) L L anxjexn-l-j. 
n2':l j=O 
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By Proposition 4.1.4, we can re-order the series as a power series in x, which 
gives 

00 

f(x) = (x - 0:) L bjxj = (x - o:)g(x), 
j=O 

where g(X) is the power series with coefficients 

00 

bj = L aJ+Hko:k. 

k=O 

It is easy to see that bj -> 0 as j -> 00. In fact, we have 

for every j, and 

and finally, if j :::::: N, 

This shows that the magic number in Strassman's theorem when applied to 
g(X) is N - 1. By induction, we can assume that g(X) has at most N - 1 
zeros in Zp, which implies that f(X) has at most N zeros (those of g(X), 
plus 0:). This proves the theorem. 0 

Problem 156 Check that the application of Proposition 4.1.4 in the proof of Strass
man's theorem is valid. 

Strassman's theorem is only the first of several important theorems 7 about 
zeros of functions on IQp defined by power series. Even so, it is a very powerful 
theorem. Here are some consequences. 

Corollary 4.4.7 Let f (X) = 2:: anxn be a non-zero power series which 
converges on Zp, and let 0:10 ... , O:m be the roots of f(X) in Zp- Then we 
can find a power series g(X) which converges on Zp but has no zeros in Zp, 
for which 

f(X) = (X - o:d ... (X - O:m)g(X). 

PROOF: Clear from the proof of the theorem and Proposition 4.4.3. 0 

Since Zp is just the closed unit ball in IQp, we can extend the result to 
other disks by simple scaling. 

7For example, the p-adic Weierstrass Preparation Theorem and the theory of Newton 
polygons, which allows very detailed control of the zeros. See Chapter 6 for more details. 
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Corollary 4.4.8 Let f(X) = L anxn be a non-zero power series which 
converges on pmzp, for some m E Z. Then f(X) has a finite number of 
zeros in pmzp-

PROOF: Define g(X) = f(pmx) = Lanpmnxn. Since f(X) converges in 
pmzp, g(x) converges for x E Zp, and applying the theorem to g(X) gives 
the finiteness. D 

Problem 157 Strassman's Theorem actually gives a bound for the number of roots 
in Zp. What is a bound for the number of roots in pmzp? 

Problem 158 Say all you can about the zeros of the functions defined by the power 
series in problem 145. 

This result allows us to prove a variant of Proposition 4.4.3: 

Corollary 4.4.9 Let f(X) = L anxn and g(X) = L bnxn be two p-adic 
power series which converge in a disk pmzp- If there exist infinitely many 
numbers a E pmzp such that f(a) = g(a), then an = bn for all n 2: O. 

PROOF: Apply the previous corollary to f(X) - g(X). D 

Notice that since pmzp is compact, the existence of infinitely many a as 
above implies the existence of a convergent sequence of such a, so that this 
result could also be proved directly from Proposition 4.4.3. 

One consequence of this is something of a surprise: 

Corollary 4.4.10 Let f(X) = LanXn be a p-adic power series which con
verges in some disk pmzp. If the function pmzp ---+ Qp defined by f(X) is 
periodic, that is, if there exists 7r E pmzp such that f(x + 7r) = f(x) for all 
x E pmzp, then f(X) is constant. 

PROOF: The series f(X)- f(O) has zeros at n7r for all n E Z. Since 7r E pmzp 
implies n7r E pmzp, this gives infinitely many zeros, and hence the series 
f(X) - f(O) must be identically zero, i.e., f(X) must be constant. D 

This offers an intriguing contrast to the classical case, where the sine 
and cosine functions are both periodic and "entire," i.e., they can each be 
expressed as a power series that converges everywhere. The crucial difference 
is that in the classical case it never happens that all the multiples of the period 
are in the same bounded interval, while in our case the non-archimedean 
property guarantees just that. 

While periodicity is very different in the classical and the p-adic situations, 
the zeros of an entire function are distributed similarly in both cases: 

Corollary 4.4.11 Let f(X) = L anxn be a p-adic power series, and sup
pose that f(X) is entire, i.e., that f(x) converges for every x E Qp. Then 
f(X) has at most a denumerable set of zeros. Furthermore, if the set of zeros 
is not finite then the zeros form a sequence an with lanl ----? 00. 



4.5 Some Elementary Functions 111 

PROOF: This is clear, because the number of zeros in each bounded disk 
pm'lLp is finite. 0 

It is natural (and tempting) to conjecture from these results that there 
should be a representation of any entire function as an infinite product over 
the zeros; something like 

where 0: ranges over the zeros of f(X) and h(X) is an entire function with no 
zeros. (Why it's best to write the expansion in terms of the inverses of the 
roots may be a little mysterious now; we will go back to this in Chapter 6.) 
It is easy to see that such a representation does exist, but it will not be very 
interesting unless we are ready to go to the algebraic closure of Qp, since 
even polynomials may fail to have roots in Qp. When we have the necessary 
machinery set up for working over the algebraic closure, we will be able to 
obtain a very precise description of entire functions in this spirit. 

This brings out a rather embarrassing point: in the case of R, the alge
braic closure is an old friend, the field of complex numbers. By contrast, we 
really know very little about the algebraic closure of Qp- In fact, we do not 
even know whether the p-adic absolute value on Qp can be extended to the 
algebraic closure. It turns out that this extension is indeed possible (we will 
discuss this a little later), but that the algebraic closure is not complete with 
respect to this absolute value. (This is very different from the classical case, 
where <C is just as complete as JR.) The obvious thing to do is to go through 
the completion process again. The resulting field, usually called <Cp , is both 
complete and algebraically closed, and is the p-adic analog of the complex 
numbers. From many points of view, the field <Cp is the "correct" context in 
which to do p-adic analysis, and we will go through the process of construct
ing it and studying the results in chapters 5 and 6 of this book. For now, we 
want to stay at a more intuitive level, and hence will continue working in Qp
What we will do, however, is be careful to construct our arguments in such 
a way that they will be easy to generalize to other fields. This will save us a 
lot of work later on. 

4.5 Some Elementary Functions 

In this section, our goal is to use power series to define p-adic functions 
which are analogous to classical functions. We begin with p-adic versions of 
the exponential and the logarithm functions. In contrast to the archimedean 
case, it is the logarithm that has the better convergence properties. 

We begin with the usual power series for the logarithm: 

00 xn X 2 X3 
f(X) = log(l +X) = "(_l)n+l_ = X - - + - + ... 

~ n 2 3 
n=l 
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(We use log-rather than log-to emphasize that we are considering the 
formal power series, and not the function, which after all we have not yet 
defined in the p-adic context.) Since the coefficients of this power series are 
rational numbers, it makes sense to think of the series as a power series in Qp 
(for any prime p). The first step towards understanding it is, of course, to 
compute its radius of convergence. Before we jump into the limit calculation, 
however, we should note another classical vs. p-adic contrast. In the classical 
case, all the integers in the denominators help the convergence, because they 
tend to make the terms of the series smaller. In the p-adic case, this is exactly 
reversed: integers in the denominator either do not change the absolute value 
(when they are not divisible by p) or make it bigger (when they are). What 
saves convergence in the case of this series is that "in general" n is not too 
divisible by p. 

oc xn 
To compute p, let f(X) = 2) _l)n+l_, so that 

n=l n 

From this, we get 
\llanl = pvp(n)/n ----t 1 

as n ----t 00. (Check!) Hence, p = 1. This doesn't decide for us whether the 
convergence happens on the open or closed ball of radius 1. To decide, we 
need to look at what happens when Ixl = 1. But it is clear that in that case 
lanxnl = lanl = 111nl does not tend to zero. So we get 

Lemma 4.5.1 The series 

oc xn X2 X 3 X4 
f(X) = 2) _l)n+l-;:;:- = X - 2 + 3 - 4 + ... 

n=l 

converges for Ixl < 1 (and diverges otherwise). 

Problem 159 Check that 
lim pvp(n)/n = 1. 

n--->oo 

(The main idea is to estimate vp{n) as a function of n.) 

The conclusion is that f(X) defines a function on the open ball B(O, 1) of 
radius 1 and center O. This suggests that we should define the logarithm in 
the obvious way, so that f(x) = 10g(1 + x). 

Definition 4.5.2 Let B = B(l, 1) = {x E Zp : Ix -11 < I} = 1 + pZp. We 
define the p-adic logarithm of x E B as 

OC (l)n 
logp(x) = log(l + (x - 1)) = 2:) _l)n+1 x-

n n=l 
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Of course, if we want this function to deserve to be called a logarithm, we 
had better check that it satisfies the functional equation that characterizes 
logarithms. 

Proposition 4.5.3 Suppose a, bEl + p7l,p. Then 

PROOF: In the literature, this is often proved by noting that there is an 
underlying identity of power series. The problem with this is that verifying 
condition (iii) of Theorem 4.3.3 is somewhat problematic. So instead we give 
a direct proof that mimics the classical proof. For any x E p7l,p, let 

00 n 

f(x) = 10gp(1 + x) = 2) _l)n+1~. 
n 

n=l 

Then, by our results on derivatives of functions defined by power series, we 
have 

Now fix y E p7l,p and define 

g(x) = 10gp((1 + x)(l + y)) = f(y + (1 + y)x). 

By the result in problem 152, this is a power series that converges for Ixl < l. 
Now use the chain rule to compute the derivative of g: 

g'(x) = (1 + y)!'(y + (1 + y)x) = 1 + y(~ ~:~ y)x = 1 ~ x = f'(x). 

Since both f(x) and g(x) are defined by power series that converge for Ixl < 1, 
it follows by Corollary 4.4.5 that g(x) = f(x) + c. Plugging in x = 0 shows 
that c = g(O) = f(y). Hence we've shown that g(x) = f(x)+ f(y); translating 
back to logarithms, this says 

and we are done. D 

Problem 160 Show that if p = 2 then -1 E B, so that it make sense to compute 
logp(-l). Show that logp(-l) = o. Compare with the example in section 3 of 
Chapter 1. Can you estimate the highest power of 2 that divides the n-th partial sum? 

In the previous chapter, we used Hensel's Lemma to determine for which 
m there exist m-th roots of unity in Qp- Our method restricted us to the case 
where p f m, so we left open the possibility of the existence of pn_th roots of 
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unity in Qp. It turns out, as we said then, that these do not exist, except 
for the trivial case when p = 2 and n = 1. The next three problems use the 
p-adic logarithm to prove this claim. The idea is that if x is a root of unity 
and x E 1 + p7!,p, then we must have logp(x) = 0, so that studying the zeros 
of the logarithm will gives us a handle on the roots of unity. 

Problem 161 Use Strassman's Theorem to show that for p i= 2 we have logp(x) = 0 
if and only if x = 1. If p = 2, show that logp(x) = 0 if and only if x = ±1. (Hint: one 
can't use Strassman's Theorem directly, because the series does not converge in Zp, 
but rather in pZp. But that is easily handled with a change of variables.) 

Problem 162 Let p i= 2. Show that if x E 1 + pZp and xP = 1, then x = 1. 
Conclude that there are no p-th roots of unity (and hence no pn-th roots of unity) in 
<Qp. 

Problem 163 Let p = 2. Show that if x E 1 + 2Z2 and X4 = 1, then x = ±1. 
Conclude that there are no fourth roots of unity in <Q2. (There are, of course, the 
square roots of unity ±1.) 

Since knowing the roots of unity in Qp turns out to be very useful, we 
summarize all that we know about them: 

• for p = 2, the only roots of unity in Qp are ± 1 

• for p =f=. 2, Qp contains all of the (p - l)-st roots of unity, and no others. 

(Recall that the existence of the (p - l)-st roots of unity was proved as an 
application of Hensel's Lemma in the last chapter.) 

Having obtained a logarithm, exponentials cannot be far behind. In the 
classical case, the series 

00 xn X 2 X3 
exp(X) = '" - = 1 + X + - + - + ... 

L n! 2 6 
n=O 

converges for all x E JR, because the coefficients lin! tend very quickly to zero 
with respect to the real absolute value. In the p-adic context, of course, this 
changes drastically, because n! tends to zero, so that lin! becomes arbitrarily 
large as n grows. This means that we cannot expect to have a large radius 
of convergence. To determine what that radius will be, we have to work out 
exactly how fast the coefficients lin! grow, i.e., we have to work out the how 
divisible n! is by p. 

Lemma 4.5.4 Let p be a prime. Then 

vp(n!) = f l ~J 
i=O p 

n 
<--1' p-

where l·J is the greatest integer function. In particular 

In!lp > p-n!(p-l) 
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PROOF: The formula 

vp(n!) = f l~J 
i=l p 

is well known and easy to prove. We leave it as the next problem. The 
inequality then follows, because l x J ::; x, so that 

v (n!) = ~ lnJ ::; ~ n = _n_ 
p ~ p' ~ p' p-l 

.=1 .=1 

by the usual formula for geometric series. o 

Problem 164 Prove that 

vp(n!) = f l~J 
i=l P 

Here is another version of the same formula, which sometimes is useful: 

Problem 165 Let n be a positive integer, and let n = ao + alP + a2p2 + ... + akpk 

be its expansion in base p. Let s = ao + al + ... + ak be the sum of the digits in the 
expansion. Show that 

n-s 
vp(n!) = --1· 

p-

(Hint: work out the difference between n/pi and its integral part in terms of the base 
p expansion.) 

Now we use these estimates to work out the convergence of the exponen
tial. 

Lemma 4.5.5 Let 

00 xn X2 X3 
g(X) = " - = 1 + X + - + - + ... 

~ n! 2! 3! 
n=O 

Then g(x) converges if and only if Ixl <p-l/(p-l). 

PROOF: Since 
lanl = II/n!1 = pvp(n!) < pn/(p-l) 

by our first estimate, we get 

> -l/(p-l) P -p . 

Thus, the series certainly converges for Ixl < p-l/(p-l). 

On the other hand, let Ixl = p-l/(p-l) and let n = pm be a power of p. 

In this case, we have 
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(notice that this is a special case of the result in problem 165). Then, since 
vp(x) = 1/(p - 1), 

This does not depend on m, hence xn In! cannot tend to zero, and the series 
doesn't converge. Since we know that the region of convergence is a disk, 
this proves the lemma. 0 

REMARK: There is something a little strange about the inequality in the 
lemma. If p -I- 2 and x E Zp, then the absolute value of x can either be 
greater than or equal to 1 (which is bigger than p-l/(p-l)) or less than or 
equal to p-l (which is smaller): there are no values "in the middle." Thus, 

Ixl < p-l/(p-l) ¢=} Ixl :S p-l ¢=} x E pZp ¢=} Ixl < 1, 

so that the disk in the lemma is just the open disk of radius one. This seems 
to suggest that all our care in working out the precise radius of convergence 
is wasted. This is not really the case. The point is that our estimates will 
work in any field containing Qp (with an absolute value extending the one 
on Qp), and in such fields there indeed may be elements with 

p-l/(p-l) :S Ixl < 1. 

This will be particularly important when one wants to work in the field Cp 

which we mentioned above. 
In any case, it is worth noting that as long as we stay in Qp, we have: 

• if p -I- 2, g(x) = exp(x) converges for x E pZp, 

• if p = 2, g(x) = exp(x) converges for x E 4Z2 , 

since -1/(2 - 1) = -1. 
Now we can define the p-adic exponential. 

Definition 4.5.6 Let D = B(O,p-l/(p-l)) = {x E Zp : Ixl < p-l/(p-l)}. 
The p-adic exponential is the function expp : D ----> Qp defined by 

00 n 

expp(x) = 2: ;. 
n=O n. 

Just as in the case of the logarithm, the formal property of the exponential 
is preserved. 

Proposition 4.5.7 If x, y E D we have x + y E D and 
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PROOF: This is essentially a formal manipulation of power series: 

00 ( +)n 00 1 n ( ) 
exp (x + y) = '" x y = '" _ '" n xn-kyk 

p ~ n! ~n!~ k 
n=O n=O k=O 

L
oo Ln 1 n! n-k k 

- - X Y 
- n! (n - k)!k! 

n=Ok=O 

00 n n-k k 

= LL (:- k)!~! 
n=Ok=O 

= (f: ~) (f: ~:) 
m=O k=O 

= expp(x) expp(y) , 

as claimed. o 

Problem 166 Are there convergence issues to check in the proof? 

This shows that, apart from the smallish radius of convergence, we have 
obtained something that is a lot like the classical exponential. 

There is of course one more formal property we would like to be true also 
in the p-adic context: the fact that the logarithm and the exponential are 
inverses, i.e., the relation 

exp(log(l + X)) = 1 + X 

and its inverse. This is a formal equality of power series, so that we only 
need to check that the conditions in Theorem 4.3.3 hold. 

Proposition 4.5.8 Let x E ::lp, Ixl < p-l/(p-l). Then we have 

so that expp(x) is in the domain of logp' and 

Conversely, if Ixl < p-l/(p-l) we have 

Ilogp(1 + x)1 < p-l/(p-l) 

so that 10gp(1 + x) is in the domain of expp, and 
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PROOF: We need to check the estimates to know that all the series converge, 
and we also need to check condition (iii) from Theorem 4.3.3. Note first that 
both identities are clearly true when x = 0, so that we can assume x =1= 0. 

To compute logp(expp(x)), we are actually plugging expp(x) - 1 into the 
series log(1 +X), so that is the quantity we need to estimate. We start from 

which we get from Lemma 4.5.4. Since Ixl < p-l/(p-l) , this is less than 1, 
and it follows that 

as claimed. 
But in fact we can do better by using the result in problem 165; suppose 

n ::::: 2; to make the computation easier, let's use the valuation vp instead of 
absolute values. Since vp(x) > Ij(p - 1), we get 

( xn-l) n - 1 n - s s - 1 
v -- =(n-l)v (x)-v (n!»-----=--:::::O, 
p n! p p p - 1 P - 1 P - 1 

where, as in problem 165, s is the sum of the digits in the expansion of n in 
base p (so that s ::::: 1). It follows that 

I n-ll 
X n! < 1, 

and so 

But this implies that lexpp(x) -11 = Ixl > Ixnjn!1 for all n ::::: 2, so that 
condition (iii) in Theorem 4.3.3 is satisfied. (Notice that this also shows that 
I expp(x) -11 < p-l/(p-l), a stronger inequality than claimed in the theorem.) 
Applying Theorem 4.3.3, we can conclude from the formal equality of power 
series that if Ixl < p-l/(p-l) we have 

Now let's consider the composition in the opposite order. This time we're 
plugging 10gp(1 + x) into exp(X), so we need to estimate the series for the 
logarithm. Suppose, then, that Ixl < p-l/(p-l), or, in valuation language, 
that vp(x) > Ij(p - 1). 
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If n > 1, we get 

( (_l)n+l xn) 
vp n - vp(x) = (n - l)vp(x) - vp(n) 

n-1 
> -- - v (n) 

p -1 p 

= (n -1) (_1 _ vp(n») . 
p-1 n-1 

If we can show that the last expression is never negative, it will follow both 
that the estimate we claimed above holds and that the extra condition is 
satisfied. So let n = pVn' with n' not divisible by p. Then 

vp(n) 
n-1 

v v 1 v 1 
---<--=-- <--. 
pVn' - 1 - pV - 1 P - 1 pv-l + ... + p + 1 - P - 1 

Putting all the inequalities together gives that for n > 1 we have 

or, going back to absolute values, 

Now we appeal to Corollary 4.1.2; it tells us that 

I logp(x) I = Ixl < p-l/(p-l), 

which shows both that logp(x) is in the domain of the exponential and that 
condition (iii) in Theorem 4.3.3 is satisfied. Hence the formal equality of 
power series implies what we want: 

This finishes the proof. D 

Problem 167 The one step that might need checking is the the inequality 

v <l. 
pv-l + ... + p + 1 -

Can you prove it? 

The hypotheses of the theorem are indeed necessary, for two reasons. The 
first, and less crucial one, is that if Ixl < 1 but Ixl :2': p-l/(p-l), it can very 
well be that logp(l + x) does not belong to the domain of the exponential. 
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(Can you find an example with p = 2?) But much more serious is the fact 
that it can happen that we have Ixl < 1, Ixl ~ p-l/(p-l), and also 

Ilogp(l+x)1 <p-l/(p-l), 

so that all the series involved converge, but 

expp(logp(l + x)) i- 1 + x. 

This is due to the fact that the extra condition in Theorem 4.3.3 really does 
matter. To see this concretely, consider what happens8 when we take p = 2 
and x = -2: in that case, 1 +x = 1- 2 = -1, so that 

Then, when we plug into the series for the exponential, we get 

In other words, the p-adic exponential and logarithm are inverses only within 
the restricted domains specified in the proposition. 

Problem 168 Why doesn't Theorem 4.3.3 apply in this situation? 

Problem 169 Use power series to define p-adic analogues of the sine and cosine 
functions, and determine their regions of convergence. Show that if p == 1 (mod 4) 
then there exists i E Qp such that i 2 = -1, and the classical relation 

expp(ix) = cosp(x) + isinp(x) 

holds for any x in the common region of convergence. The classical trigonometric 
functions are periodic; are the p-adic versions periodic? 

As an application of the p-adic logarithm and exponential, we can study 
the group of p-adic units Z; a little more carefully. We've already shown, 
using Hensel's lemma, that Z; contains the (p -l)-st roots of unity. Now we 
want to know what "the rest of Z;" looks like. The idea is to look carefully 
at the domains and images of the logarithm and exponential functions. 

To simplify the notation, let's introduce a parameter q as follows: 

• if P is an odd prime, then q = Pi 

• if P = 2, then q = 4. 

The point is that then the p-adic exponential expp (x) will be defined for 
x E qZp, and logp(x) will be defined for x E 1 + pZp- Notice also that Qp 
contains the (p - 1 )-st roots of unity when p is odd, and contains the square 
roots of unity when p = 2. If we use Euler's <p function, defined by <p(n) = 

the number of integers between 1 and n which are relatively prime to n, then 
the number of roots of unity in Qp is always <p(q), since <p(p) = p -1 for any 
prime, and <p(4) = 2. 

8This is the example we referred to above when we discussed Theorem 4.3.3. 
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Problem 170 Another way to define the 'P function is to say that 'P{n) is the number 
of elements in (Z/nZ)X, i.e., the number of invertible elements in the ring Z/nZ. Check 
that the two definitions are equivalent. 

Let's define two subsets of Z;: 

U = {x E Z; : I x-II < I} = 1 + pZp 

Notice that 

• U I cUe z;, 
• U = U 1 except if p = 2, 

• if p = 2, then U = Z;, and 

• U and U 1 are subgroups of Z; . 

The elements of U are often called the "I-units" (which comes from "the 
units which are congruent to I (mod pZp)"). 

Problem 171 Check that U and U 1 are indeed subgroups of Z; . 

We can now determine the structure of Z; quite precisely: 

Proposition 4.5.9 Let U and U I be as above, and let 

considered as an additive group. 

i) The p-adic logarithm logp defines a homomorphism of groups 

whose image is contained in the valuation ideal p = pZp. 

ii) The p-adic logarithm logp defines an isomorphism of groups 

10gp:UI ~ W, 

with inverse expp' In particular, U I ~ W ~ zt is torsion-free. 

PROOF: This is a straight translation of the discussion above into the lan
guage of groups. Recall that a group is torsion-free if there exist no elements 
x =I- I such that xm = I for some m. The last statement follows from the 
fact that the additive group zt is torsion-free. 0 
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Corollary 4.5.10 For any prime p, we have an isomorphism '1'.; ~ V X VI, 
where V 1 ~ zt is a torsion-free pro-p-group and V is the torsion part of '1'.; . 
Furthermore: 

i) V is the set of roots of unity in Qlp, which is a subgroup of '1'.;, and 

ii) V ~ ('1'./ qZ) x, so that V is a cyclic group of order <p( q); 

PROOF: It is easy to see that there is an exact sequence 

1 -----+ VI -----+ '1'.; ~ (Z/qZ)X -----+ o. 

(Remember that this means that the kernel of each homomorphism in the 
sequence is equal to the image of the previous one, so that this is basically 
just the definition of Vd In fancy language, what we want to prove is that 
the exact sequence "splits," but we will just give a direct proof. 

We already know (from a combination of Hensel's Lemma and Strassman's 
Theorem) that '1'.; contains a group V of roots of unity. It is a cyclic group 
of order p - 1 when p is odd, and of order 2 when p = 2, so in any case it case 
<p(q) elements, i.e., just as many elements as (Z/qZ)X does. We know that 
any two of these elements are distinct modulo q (Hensel's Lemma for odd p, 
check directly for p = 2-see the next problem). Suppose (1 and (2 have the 
same image under the map 1r. Then (1(21 E Vb so that (1(21 = 1 + qx for 
some x E Zp, so that (1 == (2 (mod q), which we know can't happen unless 
(1 = (2. In other words, 7r induces an isomorphism between V and (Z/qZV, 
and the other assertions in the theorem follow easily. 0 

Problem 172 Prove that two different roots of unity (of order prime to p) cannot 
be congruent modulo qZp. (This means: their difference cannot belong to qZp. There 
are a whole lot of ways to do this.) 

Problem 173 Fill in whatever is missing in the proof of the Corollary. 

One thing that follows from this result is that for any odd prime p there 
exists an inclusion 

w : IF; ~ V L-4 '1'.; , 
where IFp is the field with p elements. We can extend w to IFp by setting 
w(O) = O. The function w is called the Teichmiiller character, and it appears 
quite frequently in many different guises. If we compose it with the "reduction 
modulo p" map from '1'. to IFp, 

(mod p) w '1'. ----_:> IFp ~ Zp , 

we get a Dirichlet character9 with values in Zp, which is also usually called 
the Teichmiiller character and denoted by w. To complete the confusion, one 

9 Basically, a multiplicative function on Z. 
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often also uses w to denote the projection from Z; onto its direct factor V, 
so that every x E Z; is written uniquely as 

x=W(X)'XI 

with Xl E 1 + qZp- This makes sense, because if we extend this projection to 
all of Zp by mapping non-units to 0, and then restrict back to Z, we get the 
Dirichlet character w. The apparently confusing notation turns out, then, 
not to be so bad, because all the different maps denoted by ware closely 
related. 

Problem 174 When p = 2, some of the above needs to be modified. What changes 
are needed? 

To introduce one more bit of notation, one often uses (x) to denote the 
projection of x on U I = 1 + qZp, so that the direct product decomposition 
looks like 

x = w(x)(x). 

The next problem gives a different way of obtaining w. 

Problem 175 Show that if p =f. 2 and x E Z; , then we have 

w(x) = lim xpn. 
n-->oo 

(Hint: one idea is to start with the expression of x as a product of w(x) and (x).) 

We want to conclude our exploration of the p-adic elementary functions 
by considering the binomial series. In JR, we know that we function (1 + XY" 
can be expanded as a power series which converges for Ixi < 1: 

(1 + X)Q = B(a,X) = ~ (~)xn, 
where 

( a) = a(a -1) ... (a - n + 1). 
n n! 

We want to use this series to define the p-adic version of this function. (Of 
course, as is the case over JR, this is only interesting when a is not an integer, 
but it will work in that case also.) In the p-adic context, the convergence 
properties of the series will depend on the choice of the p-adic number a. 
We only consider the case when a E Zp is a p-adic integer. The case when 
a E Qp but is not in Zp is actually easier, and we leave it as an exercise for 
the reader. 

So take a p-adic integer a, and consider the binomial series 

(1 + X)Q = B(a,X) = ~ (~)xn. 
The first thing is to check that the coefficients are be p-adic integers. 
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Lemma 4.5.11 If a E Zp and n ;::: 0, then (~) E Zp. 

PROOF: For each n, consider the polynomial 

Pn(X) = X(X -1) .. . /X - n + 1) E Q[X]. 
n. 

Just as any polynomial does, Pn(X) defines a continuous function from Qp to 
Qp. Now, we know that the binomial coefficient (';:) of two positive integers 
m, n E Z+ is in Z. Hence, for a E Z+, we have 

In other words, the continuous function Pn maps the set Z+ of positive 
integers to Z. By continuity, it must map the closure of Z+ in Zp to the 
closure of Z. But remember that any element in Zp is the limit of a sequence 
of positive integers (the partial sums of its p-adic expansion). Hence the 
closure of Z+ is all of Zp, and we conclude that Pn maps Zp to Zp, which is 
what we want to prove. D 

Corollary 4.5.12 If a E Zp and Ixl < 1, the series 

converges. 

PROOF: Clear. D 

Problem 176 The Corollary makes no claim that the radius of convergence is in fact 
equal to I, nor that the series diverges when Ixl = 1. What are the facts? 

As for the logarithm and exponential, it follows from an equality of formal 
power series that for a = alb E Z(p) and Ixl < 1 we have 

so that it makes sense to write 

B (~, x) = (1 + x)a/b. 

This suggests that we should define, for any a E Zp and any x E pZp, 

(1 +x)Q:= B(a,x). 

One should be careful, however, to distinguish the p-adic function B(alb, x) 
from its real analogue, even when x is rational and 1 + x is a b-th power in 
Q. The following neat example is taken from [Kob84]. 
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EXAMPLE: (Following Koblitz) Let p = 7, a = 1/2, and x = 7/9, so that 
x E 771'7 and 1 + x = 16/9 is a rational square. In JR, we have 

4 (1 + x)1/2 = -
3· 

In Q7, on the other hand, we have Ixl = 1/7, so that, for n ::::: 1, 

This implies that 

(1 + x)1/2 = 1 + L C~2)xn E 1 + 77!..7, 
n~l 

or, in terms of absolute values, that 

1(1 + X)1/2 - 11 < 1. 

But 

so that we cannot have B(~,~) = 1. In fact, what happens is that in Q7 we 
have 

(1 + 7/9)1/2 = B (~ ~) = _i = 1 - ~ E 1 + 77!..7. 
2' 9 3 3 

The point is that the same series L: an with an E Q can converge in both lR 
and some Qp, but have different limits (even different rational limits), since 
the topologies are completely different. 

In any case, we will write (1 + x)'" instead of B(a, x), and let the context 
decide in which field we are working. The point is to keep in mind that the 
meaning of the symbol depends on the underlying field. 

Problem 177 Study the convergence properties of the binomial series when a is not 
a p-adic integer. 

Problem 178 Show that the value of B(a, x) does not depend on the field we are 
working in when x E Q and a E 7!.. is an integer. 

The next exercise is taken from [Kob84]. It attempts to decide exactly 
when (1 + X)1/2 is equal to the positive square root. 

Problem 179 (Koblitz) Choose x E Q such that 1 + x is a square in Q; say 
v'I+X = a/b with a and b positive and relatively prime. Let S be the set of primes 
(including the infinite prime, if applicable) for which the binomial series B(1/2, x) 
converges in Qp. (The limit will have to be a square root of 1 + x, hence will equal 
either a/b or -a/b.) Prove that: 
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i) If P is an odd prime, then pES if and only if pl(a + b) or pl(a - b), and in Qp 
we will have B(1/2,x) = -alb in the first case, B(1/2,x) = alb in the second. 

ii) We will have 2 E S if and only if a and b are both odd; the limit in Q2 will be 
alb if a == b (mod 4), and -alb if a == -b (mod 4). 

iii) We will have 00 E S if and only if 0 < alb < )2, and the sum in ~ will always 
be alb. 

iv) There is no x for which the set S is empty, and S will have only one element if 
and only if x E {8, 11, 3, %}. 

v) Except for the x mentioned in the previous item, there always exist primes p, q E 
S such that the sum in Qp is different from the sum in Qq. 

For other interesting results along these lines, tracking what happens 
when we look at the same series in various different iQp, see the article [BS96]. 

4.6 Interpolation 

The idea of interpolating a known function to obtain a related p-adic function 
has become very important in number theory, where the standard targets for 
this method have been the zeta and L-functions. The point of this section is 
to give a first example of this. Our example is very simple, and it illustrates 
only some of the many ideas that have arisen in the literature. We refer the 
reader to the standard references. 10 

In the previous section, we considered the binomial series, and used it 
to define a p-adic function x f--> x'" for x E 1 + pZp and 0: E Zp. What we 
would like to do in this section is to invert the situation, and think of x'" as 
a function of 0:. We would like to interpret this as an interpolation problem, 
in the following way. 

Suppose n E Zp is any p-adic integer, and 0: is an integer. Then it certainly 
makes sense to compute n"'. Thus, we can consider the function 

f(o:) = n"', 

which is well-defined for 0: E Z. What we would like to do is to extend this 
function to the widest possible range of p-adic values of 0:. Since Z is dense 
in Zp, such an extension, if continuous, is unique, because two continuous 
functions that coincide on a dense subset are identical. Indeed, one can even 
work with smaller subsets of Z: the set of positive integers, or the set of 
negative integers, or any other set of integers which is dense in Zp- The 
problem of finding such an extension is called the problem of finding a p-adic 
interpolation of the function f(o:) = n"'. 

The first thing to say about p-adic interpolation is that in a certain sense 
the whole thing is trivial. This is because we know perfectly well when it is 

lOThe idea of working out this example is due to Koblitz, who goes through a similar 
discussion in [Kob84]. 
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that a function defined on a dense subset of Zp has a continuous extension 
to all of Zp. The crucial notion here is uniform continuity, and we recall 
what that means. If f(x) is a function defined on (a subset of) a field Ik: with 
an absolute value, we say that f is uniformly continuous if it satisfies the 
following condition: 

Given any real number E > 0, one can find a real number 8 > 0 
such that for any x, y E Ik: 

Ix - yl < 8 =} If(x) - f(y)1 < E 

The point, of course, is that mere continuity guarantees that for each fixed 
choice of x one can find a 8 that works, but uniform continuity requires that 
the same 8 work for every x. The reason this is relevant to the interpolation 
problem is a well-known theorem which we leave as an exercise: 

Problem 180 Show that any continuous function defined on a compact set is auto
matically uniformly continuous and bounded. 

Problem 181 Can you give an example of a function Z --+ Zp which is continuous 
but not uniformly continuous? (This may be a little hard.) 

Now suppose our f(o:) could indeed be extended to Zp- Then, since Zp is 
compact, the extension would have to be bounded and uniformly continuous. 
Hence (restricting back), so would f(o:). It turns out that in fact these two 
conditions are sufficient. 

Proposition 4.6.1 Let S be a dense subset of Zp, and let f : S --+ Qp be 
a function. Then there exists a continuous extension j : Zp --+ Qp of f to 
Zp if and only if f is bounded and uniformly continuous. If it exists, this 
extension in unique. 

PROOF: We know that the condition is necessary, and that the extension 
is unique if it exists, by the discussion above. The difficulty is to prove the 
sufficiency, i.e., to show that uniform continuity and boundedness are enough 
to guarantee the existence of the extension. 

The key is the continuity. If x E Zp, there exists a sequence 

of elements of S which tends to x (because S is dense). If j exists, then we 
will have 

This shows the way to proceed. 
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First of all, since the sequence o.k tends to x, it is a Cauchy sequence, so 
that 

lim Io.k+l - o.kl = o. 
Since f is uniformly continuous and bounded, it follows that 

(check!), so that the f(o.k) form a Cauchy sequence, hence have a limit in 
Qp. Now we can define j by the condition we know it has to satisfy: 

for any sequence o.k converging to x. This gives the extension. 0 

There are a whole bunch of things to check, and the reader should: 

Problem 182 Check that the image of a Cauchy sequence o.k by a bounded and 
uniformly continuous function f is again a Cauchy sequence. 

Problem 183 Check that the function j defined above does not depend on the choice 
of the sequence O.k. 

Problem 184 Check that the function j defined above is indeed a continuous func
tion on Zp. 

One less obvious fact is that one can replace Zp in the proposition by any 
compact subset of Qp: 

Problem 185 Check that the proposition remains true if we replace Zp by any com
pact subset of <Qlp, such as Z;;, 1 + pZp, or pmZp. (Hint: the point is that only the 
compactness was used.) 

This result may seem to completely settle the issue, but that is far from 
being the case, for several important reasons. For one thing, one often wants 
to know more about j than its bare existence. For example, can it be written 
as a power series? Does it extend to a set larger than Zp? Can we give a 
good method to compute (better: to approximate) it? Another point is that 
we can exploit the "if and and only if" in the proposition: if what we want 
to prove is the uniform continuity, then finding an interpolation will prove 
just that! Finally, thinking in terms of interpolation often gives us useful new 
ideas, as we shall see below when we get to the nitty-gritty of our example. 

Before we go on to the example, however, it may be useful to unwind 
what uniform continuity really means in our case. We will take f(o.) to be a 
function defined on a dense subset S of Zp, with values in Qp. Then being 
"close" in S amounts to being congruent modulo a high power of p, and being 
close in Qp is the same. Hence, f will be uniformly continuous if it satisfies 
the following congruence condition: 
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Given m E Z, there exists NEZ such that 

Thus, uniform continuity has a simple translation in terms of congruence 
properties. This turns out to be quite important. 

Now we return to the exponential function a f-t nO/.. This is defined, at 
first, for a E Z and n E Zp, and we would like to extend it to all a E Zp The 
answer, as it happens, depends quite seriously on n. 

First of all, suppose n is a I-unit, that is, n E 1 + pZp- Then we can use 
the binomial series to get our interpolation: 

Corollary 4.6.2 For any n E 1 + pZp there exists a continuous function 
fn : Zp ----., Qp such that for any a E Z we have fn(a) = nO/.. 

PROOF: We can just define fn(a) = B(a,n - 1), which converges because 
we are assuming n E 1 + pZp- Checking continuity, however, is not all that 
easy (remember that we want continuity in a, rather than in n, so it is not 
just a matter of saying that power series are continuous functions). We leave 
the verification to the reader as a challenging problem. 0 

Problem 186 Show that B(a,x) is continuous as a function of a. 

One might also try to go the direct route, and show that if n E 1 + pZp 
then a f-t nO/. is bounded and uniformly continuous. Boundedness is easy: 
any integral power of n will be in Zp (and even in 1 + pZp), because n is a 
unit (there are negative powers in this game too!). As for uniform continuity, 
that is also not hard to show; notice, first that 

so that if (3 = a + ipm we get 

nf3 = nO/.. (npTn)i == nO/. (mod pm+1), 

which is what we want. This establishes the existence of fn. Proving that 
fn(a) = B(a, n - 1) requires showing that the latter is continuous. 

This does the trick for n E 1 + pZp- We would like, however, to consider 
more general p-adic integers. Unfortunately, that turns out to be quite tricky. 
To begin with, suppose p divides n. Then, as the integer a becomes bigger, 
nO/. becomes p-adically closer and closer to zero. This messes everything up. 
For example, take n = p, and look at the sequence ak = 1 + pk. Then 

lim ak = 1, 
k->oo 

but 

so that the map a f-t pO/. is not even continuous. 
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We might have a better chance if we tried to work only with p-adic units. 
When p = 2, this gives nothing new, since Zi = 1 + 2Z2 . For odd primes p, 
however, we know that 1 + pZp is a subgroup of index p - 1 in Z;, so that 
going from n E 1 + pZp to n E Z; would be progress. Even this, however, 
turns out to be a little tricky, basically because of the presence of the roots 
of unity. 

Let p i=- 2; for n E Z;, we will try to interpolate the function 0: I---) no.. 
Since we have already done this for n E 1 + pZp, the easiest way to do this is 
to use the known relation between Z; and its subgroup 1 + pZpo Recall that 
we showed that there is a direct product decomposition 

Z; = V X U1 ~ IFpx x (1 + pZp) , 

and that for x E Z; this decomposition gives x = w(x)(x) with w(x) E V 
and (x) E 1 + pZp. Then, for any integer 0:, we have 

nO. = w(n)o.(n)o.. 

The first thing to note is that w(n) is a (p -1)-st root of unity, and hence 
if 0: == 0:0 (mod p - 1) we can re-write the formula as 

nO. = w(n)o.O (n)o.. 

Now, since (n) E 1 + pZp, we already know how to interpolate its part of the 
function, i.e., we know how to interpolate the function 0: I---) (n)o.. But this is 
almost enough to solve the problem, since we've reduced everything to this 
known interpolation together with the choice of 0:0. In fact, the best way to 
think of this is to do a complete turnaround, and change the function to be 
interpolated! 

Rather than considering the function 0: I---) nO. for all integers 0:, consider 
it only for those integers congruent to a fixed 0:0 modulo (p - 1). There 
are of course p - 1 different functions of this kind, each corresponding to a 
choice of 0:0. The kicker, of course, is that the set of integers 0: which are 
congruent to a fixed 0:0 is itself dense in Zp, so that it makes sense to ask for 
an interpolation from this set to all of Zp. And this, by the discussion above, 
is easily done: consider the p-adic function f 0.0 : Zp ---+ Zp given by 

This, first of all, makes sense, by the discussion above, since we do know how 
to compute the o:-th power of the I-unit (n). Next, it does coincide with the 
function 0: I---) nO. whenever 0: is an integer satisfying 0: == 0:0 (mod p - 1). 
So it does give a (somewhat skewed) solution to our interpolation problem, 
which we state as a theorem: 

Proposition 4.6.3 Let n E Z; and 0:0 E {a, 1, ... , p - I}, and let 

Ao.O = {o: E Z : p f 0: and 0: == 0:0 (mod p - I)} C Z. 



Then 
fOl.o (a) = w(n)OI.O (n)OI. 

defines a function f 01.0 : Zp ----+ Zp such that 
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whenever a E AOI.o. 

Notice that all the different fOl.o coincide if n E 1 + pZp, so that this is 
a genuine extension of our first interpolation. What happens, though, if we 
compute fOl.o on the wrong sort of a E Z? Well, we get something like 

fOl.o(a) = w(n)OI.O(n)OI. 

= w(n)OI.O-OI.w(n)OI.(n)OI. 

= w(n)OI.O-OI.nOl. 

In words, f 01.0 actually interpolates a function that is slightly different from 
our original function: rather than giving nOl., it gives a "twisted" version 
which ends up being equal to a root of unity times nOl.. For the special a's 
that belong to AOI.o' the root of unity disappears, and we get our original 
function. So we're close, but we haven't really done exactly what we set out 
to do. This is in fact as good a result as one might hope for, as the example 
in the next problem shows. 

Problem 187 Show that the function Z --+ Z given by a ,..... (_1)'" can only be 
interpolated to a function Zp --+ Zp when p = 2 (in which case -1 is a I-unit). For 
p = 3, the Proposition above claims that there exist two functions fo and h which 
"together" give an interpolation. Describe the two functions fo and !I. (Hint: they 
are not very interesting). 

Some readers may find this situation a bit unsatisfactory: rather than one 
interpolating function, we have ended up with a whole bunch, each of which 
gives an interpolation for a restriction of the original function to a smaller 
set. One way of jazzing this up a bit is the following. The collection of all 
the f 01.0 together define a function 

given by 9'"(a, aD) = fOl.o(a). Now, one has the "diagonal inclusion" 

given by a 1--+ (a, a). (The first a to be thought of as an element of Zp, 
the second as an integer modulo p - 1.) In other words, if a E Z, its image 
under the inclusion is the pair (a, aD), where aD == a (mod p - 1). Thus, if 
we restrict 9'" to the image of Z we get 
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This means that we can think of l' as giving an interpolation of the function 
a f-+ nO., provided we think of Z as included in this larger set. 

Interpolation problems of this kind are very important in the applications 
of p-adic analysis to number theory, and several of the features of our toy 
example persist in the more interesting ones. First, one often has to "remove 
the p-part." In our case, this was accomplished by restricting the base n 
to be a p-adic unit. Second, the interpolation often requires us to consider 
"twisted" versions of the original function. In our case, these were the several 
f 0'.0 functions, and restricting one of the f 0'.0 to Z does not give the function 
a f-+ nO., but rather the function 

This kind of modification, when something is multiplied by a root of unity, 
if often referred to as ''twisting.'' The upshot: one cannot interpolate the 
function a f-+ nO., but one can interpolate appropriate twists of that function. 
This phenomenon is actually quite common. 

An obvious question should be mentioned here: what is the point? Why 
should one want to interpolate "classical" functions in this fashion? 

The question is hard to answer in elementary terms, without delving into 
the complexities of the specific interpolation problems that mathematicians 
have been interested in. But we can give some idea of what is going on 
by saying that many classical functions have interesting "special values," 
that is, their values at certain magical points have a special significance. 
For example, the values of the Riemann zeta function (( s) at positive even 
integers involve the Bernoulli numbers, which hide within themselves quite 
a lot of information about the arithmetic of cyclotomic fields. (Its pole at 
s = 1 also carries this kind of information). 

Now suppose one can interpolate these special values with a p-adic func
tion. This gives us a p-adic function which shares with its classical analogue 
the same (or similar, if a twist creeps in) special values. Well, this means that 
one can get information on those values by looking at either function ... and 
the p-adic function is often easier to handle. This yields a basic strategy that 
has been applied over and over in modern number theory, with very interest
ing results. The reader may want to browse through the articles in [CT91] 
to get some idea of what the goals of this particular enterprise are. To begin 
to study the enterprise itself, one might start with the treatment in [Kob84]. 
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Up to now, we have kept our attention focused on the field Q and its p-adic 
completions. We have already felt, however, the need to consider other fields 
(for example, when we dealt with the zeros of a function defined by a power 
series). In fact, just as we have emphasized the natural analogy between the 
p-adic fields Qp and the field lR of real numbers, it is a very natural thing to 
do to look for an extension of Qp that is analogous to the complex numbers. 
In other words, we would like to look for ways to extend Qp in order to 
obtain a field that is not only complete (so that we can do analysis), but also 
algebraically closed (so that all polynomials have roots). This turns out to 
be more subtle (and therefore more interesting) than one might expect. It 
turns out, first of all, that to get an algebraically closed field one must make 
a very large extension of Qp. This extension turns out not to be complete any 
more, so there is no other recourse but to go through the completion process 
again, and this finally yields the field we wanted. This is very different from 
the classical case, where going from lR to an algebraically closed field is just 
a small step (just add i), and the resulting field (the complex numbers) is 
already complete. The goal of this chapter is to tell the p-adic version of this 
story in its entirety. 

In order to get there, we begin by considering vector spaces over Qp and 
the norms one might define on them. This is a step in the right direction, 
since any field containing Qp will also be a Qp-vector space. We then go 
on to considering the fields themselves. This will necessarily involve some 
knowledge of abstract algebra; as usual, we have tried to make the facts we 
use explicit, in order to make it easier to look up the material we need in the 
standard texts. We start with finite field extensions, and only after we have 
understood them well do we try to go on to an algebraic closure. 

The reader should note that we have taken one of two possible points of 
view in addressing our subject. We will be investigating extensions of the 
p-adic fields Qp. It would be just as interesting to consider extensions of 
Q itself, and to attempt to construct a theory of absolute values on such 
fields. This leads to an interesting theory, which we have decided not to 
address at all (because it requires more knowledge of Galois theory than 
we wish to assume, and because it properly belongs in an introduction to 
algebraic number theory). This means that we must of necessity fail to 
mention certain topics, such as the extension to bigger fields of the product 
formula, of Ostrowski's theorem, or of the local-global principle. Instead, we 
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take a "strictly local" perspective: we are living in the p-adic world from 
the start. There is a good discussion of the global (or semi-local) aspect in 
[Cas86] and in many introductions to algebraic number theory. 

Once we have absolute values on extensions of Qp, we will be in a position 
to extend to such fields much of what was done in chapters 3 and 4. Rather 
than do so in full detail, we will often be content with "this clearly extends;" 
the reader for whom the "clearly" is not clear should go back and check. 1 We 
will also need to prove a few results about these fields that will allow us to 
understand what goes on when one puts them all together to get an algebraic 
closure. 

5.1 Normed Vector Spaces over Complete Valued Fields 

The algebraic part of the theory of vector spaces over Qp is, of course, identi
cal to the theory of vector spaces over any other field. This is simply because 
that part of the theory does not depend on the specific field at all: it only re
quires the knowledge of the basic field properties. Therefore, we won't bother 
to discuss the basics about vector spaces, subspaces, bases, dimension, and 
so on. 

What we would like to focus on, then, is the point where the vector spaces 
acquire a metric. This is usually done by putting a norm on the vector space. 
For example, in the classical case, we can metrize ~2 using the norm 

II(x, y)1I = VX2 + y2, 

and similarly for all the ~n. Of course, there isn't just one choice of norm. 
For example, the following two choices of norms on ~2 are also popular: 

II(x, y)lll = Ixl + Iyl 

and 
II(x,y)llsllP = max{lxl, Iyl} 

(the subscript 1 here has nothing to do with the subscripts on the p-adic 
norms; there should be no serious confusion involved). 

We want to build up an analogous theory for norms on vector spaces over 
Qp. We begin, as we did in Chapter 2, by considering a general theory of 
normed vector spaces over valued fields, because it is no more difficult than 
doing things over Qp. As we did then, we will restrict to Qp whenever that 
makes things easier. 

We begin with a field Ik, which we assume has an absolute value I I on 
it. (We do not make any assumption about whether the absolute value is 
archimedean, but we do assume it is non-trivial, because otherwise things 

1 Instructors should note that this may mean that more time than usual may need to 
be spent on this chapter! 
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are pretty silly.) In order to get an interesting theory, we assume that Ik is 
complete with respect to its absolute value. We will also assume for simplicity 
that Ik is of characteristic zero,2 so that it contains Q. The reader should keep 
both lR and Qp in mind as examples. 

Let V be a vector space over Ik. At first we make no further assumptions 
on V, but later we will want to concentrate on the case where V is finite-di
mensional. 

Definition 5.1.1 Let Ik be a complete valued field of characteristic zero with 
an absolute value I I. A norm on a Ik-vector space V is a function 

II II : V -----> lR+ 

satisfying the following conditions: 

i) Ilvll = 0 if and only if v = 0, 

ii) for any two vectors v, W E V, we have Ilv + wll :s; Ilvll + Ilwll, 

iii) for any v E V and any A E Ik, we have IIAvl1 = IAlllvll. 

A vector space V which has a norm II II is called a normed vector space 
over Ik. 

In other words, a norm is just a way to measure the size of vectors, and the 
conditions merely require that it behave as we would expect such a notion of 
length to behave. One is tempted, of course, to introduce the notion of non
archimedean norms, but it is less clear that it is a good idea. For example, 
consider the norm on V = Qp x Qp given by 

II(x,y)11 = Jlxl~ + Iyl~· 

One easily checks that this is indeed a norm, but that it does not satisfy the 
naive analogue of the non-archimedean inequality (by which we mean that 
something like 

II (x + x', y + y') II :s; max{ll(x, y) II, II(x', y') II}, 

does not hold). But this norm is still "non-archimedean" in the sense that 
given two vectors it may not be possible to find an integer multiple of one 
which is bigger than the other (check this!). In fact, this suggests that normed 
vector spaces over non-archimedean complete fields are automatically "non
archimedean" in any reasonable sense, so that there is nothing to define. 

2The reader will recall, I hope, that the characteristic of a field is the smallest number 
of ones that need to be added together to get zero, when this is possible, and is zero when 
it is not possible. For example, the characteristic of Q is zero, and the characteristic of lFp 
is p. It is an easy exercise to prove that if the characteristic is non-zero, then it must be a 
prime number. 
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Given a norm, we can easily define a metric (i.e., a way of measuring 
distance) on V, by saying that the distance between two vectors is (what 
else?) the size of their difference: 

Definition 5.1.2 Let V be a normed vector space with norm II II. We define 
a metric on V by putting, for any v, W E V, 

d(v, w) = Ilv - wll. 

Problem 188 Show that the metric thus defined is indeed a metric, that is, it has 
the properties listed in Problem 42. 

Once we have a metric, we have, as in Chapter 2, a topology, so that we 
can talk about open and closed balls, open sets, and convergence. (We urge 
the reader who is hesitant about this to re-read the appropriate section of 
Chapter 2.) 

Problem 189 Let V be a normed vector space. The point of this problem is to check 
that the metric d(x,y) (or, equivalently, the norm it is derived from) relates well to the 
operations in V: 

i) Fix Vo, Wo E V. Show that for any c > 0 there exists a 6 > 0 such that, 
whenever d(v, vo) < 6 and d(w, wo) < 6, we have d(v + w, Vo + wo) < c. In 
other words, addition is a continuous function. 

ii) Fix Vo E V and AO E Ik. Show that for any c > 0 there exists a 6 > 0 such that, 
whenever d(v, vo) < 6 (distance in V) and d(A, AO) < 6 (distance in Ik), we have 
d(AV, AOVo) < c. In other words, multiplication of a vector by an element of Ik 
is a continuous function. 

This shows that the metric d(v, w) makes V a topological vector space over the topo
logical field Ik. (Compare Problem 43.) 

Let's consider some examples. For these, we assume V is finite-dimensio
nal, and we fix a basis {VI, V2, ... , v n }. Any vector in V can then be written 
(uniquely) in the form V = aIVI + a2V2 + ... + anVn with ai E Ik, and we 
exploit this to obtain norms on V from the absolute value on Ik:: 

i) We can define a norm by putting 

This is called the sup-norm on V with respect to our choice of basis. 

ii) We can also define, for each real number r ::::: 1, the r-norm 
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These are analogous to norms on spaces of functions that are often used in 
analysis. 

Notice that if Ik = JR, V = JR2, VI = (1,0), V2 = (0,1), and we take r = 1 
or r = 2, we get the examples mentioned in the introduction to this section. 
We leave it to the reader to check that these are indeed norms. 

ProbleIll 190 Check that the sup-norm and the r-norms are indeed norms. 

ProbleIll 191 Let Ik = R. V = ffi?, and use the canonical basis {(I, 0), (0, In. 
Sketch the closed ball of radius 1 with respect to (a) the sup-norm, (b) the r-norms 
for r = 1, 2, 3. 

ProbleIll 192 Show, with an example, that the norms we have defined depend quite 
seriously on the choice of basis. (Hint: this is very easy; just use the simplest vector 
space you can think of.) 

ProbleIll 193 Let V = IQlp x IQlp, and define II(x,y)11 = Ix + YI. Does this define a 
norm? 

As in the case of fields, we need to define a notion of equivalence for 
norms, just as we defined equivalence of absolute values. 

Definition 5.1.3 We say two norms 11111 and II 112 on a Ik-vector space V are 
equivalent if there exist positive real numbers C and D such that, for every 
vector V E V, we have 

and 

To get a good feeling for this notion, the reader is invited to work through 
a few elementary facts about it: 

ProbleIll 194 Show that two norms on V are equivalent if and only if they define 
the same topology on V (i.e., a set is open with respect to one norm if and only if it 
is open with respect to the other). 

ProbleIll 195 Sometimes it's useful to state the condition for equivalence in another 
way. Suppose II IiI and II 112 are equivalent. Show that any open ball around 0 with 
respect to norm II IiI contains an open ball around 0 with respect to II 112 and is 
contained in an open ball around 0 with respect to II Ik Show that this condition is 
equivalent to the two inequalities. 

ProbleIll 196 Show that if two norms are equivalent, then they have the same Cauchy 
sequences; in other words, a sequence is Cauchy with respect to one of them if and 
only if it is Cauchy with respect to the other. 
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One should note that the fact that equivalent norms give the same Cauchy 
sequences is a priori stronger than the fact that they induce the same topol
ogy. That the two things end up being the same in our case is directly linked 
to the fact that our metric comes from a norm on a vector space, and that 
extra structure yields extra information. 

Problem 197 Show that the norms on ]R2 that we mentioned above are equivalent. 
(Hint: your sketches from problem 191 might prove helpful.) 

Problem 198 Let V = Qp x Qp, and define the norms 

II(a, b)llsup = max{lal, Ibl} 
and 

II(a,b)lh = lal + Ibl· 
Prove that these norms are equivalent. 

Once we have a metric, we can ask about completeness, just as in Chap
ter 3. Recall that we say V is complete with respect to a norm II II if any 
Cauchy sequence in V (with respect to II II) converges. (Note that this de
pends only on the equivalence class of the norm, which is as we want it.) It is 
well-known that ]R2, for example, is complete with respect to all ofthe norms 
mentioned above. Here is another example where one can show completeness 
for a whole bunch of spaces and norms in one blow: 

Proposition 5.1.4 Let V be a finite-dimensional vector space over a com
plete valued field Ik. Choose a basis {Vl, V2, ... , vm} for V, and let II II be 
the sup-norm with respect to this basis. Then V is complete. Specifically, a 
sequence (wn) with 

is Cauchy in V if and only if the sequences of basis coefficients (aln), (a2n), 
... (amn) are Cauchy sequences in Ik, and the limit is obtained by taking the 
limits of the coefficients: 

lim Wn = ( lim aln)vl + ( lim a2n)v2 + ... + ( lim amn)vm. 
n----too n--+oo n--+CX) n--+oo 

PROOF: Since the norm is simply given by the largest of the basis coefficients, 
saying that Ilwnl - wn2 11 tends to zero just amounts to saying that all the 
differences ainl - ain2 do. And that is enough to prove everything we've 
claimed is true. 0 

Finally, here are some problems that suggest some avenues for further 
exploration: 

Problem 199 Let V and W be normed vector spaces, and write II Ilv and II Ilw for 
their norms. Let f : V -----t W be a linear transformation. Show that the following are 
equivalent: 
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i) f is continuous at 0 E V; 

ii) sup Ilf(v) IIw is finite; 
IIvllv9 

iii) there exists an M such that we have Ilf(v)llw ::; Mllvllv for all v E V; 

iv) f is continuous at all v E V. 

Problem 200 (Hard) Let V be the space of sequences (an) with an E Qp and 
lim an = O. Define a norm on V by II(an)11 = SUPn lanl. 

i) Is V complete with respect to this norm? 

ii) Consider the subspace W c V defined by the condition that 2: lanl converges 
(in R of course). Is W a closed subspace of V? On W, we have two norms: 
the norm induced by the norm on V, and the I-norm given by II(an )1I = 2: lanl. 
Are these norms equivalent? 

Problem 201 Let V be the space of all polynomials with coefficients in Qp. Choose 
a positive real number c E lR and define, for f(X) = anXn + ... + a1X + ao, 

i) Show that this is a norm on V. 

ii) Is V complete with respect to this norm? 

iii) We know how to multiply polynomials. Is it true that the norm we just defined 
is multiplicative, i.e., that Ilf(X)g(X)llc = Ilf(X)llcllg(X)llc? 

iv) Explain why this norm is interesting. 

v) Now suppose we vary c; we get a whole family of norms. Are they equivalent? 

5.2 Finite-dimensional Normed Vector Spaces 

The problems at the end of the previous section already hint that there 
is a fundamental difference between finite and infinite-dimensional spaces 
when it comes to the theory of norms. This is indeed the case, and in this 
section we prove the fundamental theorem about finite dimensional normed 
vector spaces over complete fields. What this theorem says is that, after 
Proposition 5.1.4, we already know all that there is to know about the finite
dimensional case. This is because it turns out that any norm on such a 
vector space is equivalent to the sup-norm (with respect to any given basis); 
in particular, all the sup-norms are equivalent. The proof ofthis result, which 
we give next, is often given only for locally compact complete fields; we give 
a general proof, following Cassels in [Cas86]. 

Theorem 5.2.1 Let V be a finite-dimensional vector space over a complete 
valued field Ik. Then any two norms on V are equivalent. Moreover, V is 
complete with respect to the metric induced by any norm. 



140 5 Vector Spaces and Field Extensions 

This is a tricky theorem to prove, so we do this in several parts. Take 
V to be a finite-dimensional vector space over lk (which have assumed to be 
complete, of course). Fix a basis {V1, V2, ... , vn } of V, and let II 110 be the 
sup-norm with respect to this basis. Finally, let II 111 be any other norm on 
V. We want to prove that II 111 is equivalent to II 110, which means that we 
want to show that there are positive real numbers C and D such that, for 
every v E V, we have 

and 

The first inequality is not very hard to obtain: 

Proposition 5.2.2 Let 

Then we have, for any v E V, 

PROOF: Take v E V, and write it in terms of the basis as 

Then Ilvllo = max lail. Now just follow the path of least resistance: 

which is exactly what we want. 0 

The converse inequality takes a lot more proving. We will do it by induc
tion on the dimension of V. 

Proposition 5.2.3 There exists a positive real number D such that, for ev
ery v E V, we have Ilvllo ::::; Dllvll1. In particular, V is complete with respect 
to II 111. 
PROOF: (Take a deep breath. Here goes.) Notice, first of all, that once the 
inequality is proved, it follows that II 111 is equivalent to the sup-norm, and 
we already know that V is complete with respect to 11110, so that V will also 
be complete with respect to II 111. In other words, once we have proved the 
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first statement of the Proposition, we will have proved the second statement 
too. 

We will prove the inequality by induction on the dimension of V, noting 
first that it is trivially true for spaces of dimension 1.3 Thus, we only need 
to prove the induction step: assume that the proposition is true for spaces of 
dimension n -1, and show that it is then also true for spaces of dimension n. 

Let V, then, be a space of dimension n. As above, we fix a basis 

We want to show that there exists a number D such that 

IIWllo :::; Dllwlll for all W E V. 

Well, suppose not. In that case, the quotient IIwlldllwllo must get arbitrarily 
close to zero as w ranges through the vectors in V (because otherwise we can 
let E > 0 be a number such that the quotient is always bigger than E, and 
then taking D = 1/ E will do the trick). This means that, given any integer 
m we can find a vector Wm such that 

1 
Ilwmlh < -llwmllo. m 

We want to argue that the Wm can be chosen in a particular (rather pecu
liar) way. Note, first, that the sup-norm Ilwmllo is equal to the largest ofthe n 
basis coefficients. Since there is a finite number of basis vectors and an infinite 
number of m's, there must be some index i such that there are infinitely many 
m's for which Ilwmllo is equal to the i-th basis coefficient. (Got it? Read it 
again.) After permuting the basis vectors, we can assume that i = n, i.e., that 
there are infinitely many m's such that Ilwmllo = the n-th basis coefficient. 
Let ml, m2,'" be the sequence of those m's, arranged in increasing order; 
we will now restrict ourselves to the corresponding sequence of w's 

Recall that these satisfy the inequality 

1 
IIWmkll1 < -llwmkllo, 

mk 

and that we've also arranged things so that if we set 13k equal to the n-th 
basis coefficient ofwmk , then Ilwmkllo = If3kl. 

Now consider the vectors f3kIwmk' These have two nice properties: 

i) their n-th basis coefficient is 1, so that we can write 

f3k1W mk = Uk +Vn , 

with Uk belonging to the subspace W c V spanned by the vectors 
VI, V2,···, Vn-l. (We take this equation as the definition of the Uk') 

3Prove it! 
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ii) We have 

where mk is an infinite increasing sequence of integers. 

It follows that we have constructed a sequence of vectors Uk, all of which 
lie in the (n-l)-dimensional subspace W, and such that the norms Iluk+Vnlll 
(where, remember, Vn is the n-th vector in our chosen basis for V) tend to 
zero as k ~ 00. 

Now clearly, the Uk form a Cauchy sequence in W, since 

By induction, we know that W is complete, so that there must be a vector 
U E W such that Uk ~ U. But then we must have 

which means that U = -Vn, which is a contradiction, since Vn (j. W by the 
definition of the subspace W. This contradiction shows that D must exist, 
and therefore proves the theorem. D 

That is quite a long haul, but worth it, since it says that, as long as our 
vector spaces are finite-dimensional, the theory is essentially quite simple, 
and we might as well work with the sup-norm all the time. 

There is one extra property of finite-dimensional normed spaces that is 
worth pointing out. This has to do with local compactness, which we discussed 
above when we showed that the p-adic fields Qp were locally compact, as are 
lR and <C (see Section 3.3). In the vector space context, we have the following: 

Proposition 5.2.4 Let Ik: be a locally compact complete valued field, and let 
V be a finite-dimensional (and therefore complete) normed vector space over 
Ik:. Then V is locally compact. 

PROOF: To show that V is locally compact, we need to find a neighborhood 
of the zero vector which is compact. The neighborhood we will choose will 
be the closed unit ball B around zero, so that 

B = {v E V : Ilvll :S; I}. 

Using the main theorem, we see that we can take any norm on V (being 
locally compact is a topological property, and all the norms are equivalent). 
We choose the sup-norm with respect to some fixed basis {VI, V2,··. v n }. 

Then a vector V = al VI + a2V2 + ... + an Vn belongs to B if and only if each 
ai belongs to the closed unit ball in Ik:. This is promising, since we know that 
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the closed unit ball in Ik is compact (because we are assuming that Ik is locally 
compact). 

In Chapter 3, we saw that to prove that a set is compact it is enough to 
show that it is complete and that it is totally bounded (which means: for 
every positive number e there is a finite covering of the set by balls of radius 
e). The first part is done already: B is a closed subset of a complete space, 
and therefore is complete. 

To show that B is totally bounded, we use the fact that the unit ball in Ik 
is totally bounded. Given an e, cover the unit ball in Ik with a finite number, 
say N, of balls of radius e. Let CI, C2, ... CN be the centers of those balls. 
Then consider the n N vectors in Veach of whose basis coefficients is one of 
the Ci' Around each of these vectors, take a ball of radius e. We claim that 
these balls cover B, that is, that any vector in B belongs to at least one of 
them. 

To see that, take a vector v = alVI + a2V2 + ... + anVn E B. Since this 
means that the coefficients aj are in the unit ball in Ik, we know that each aj 

is within less than e of one of the centers Ci; call this one Cij' Then v belongs 
to the ball of radius e (remember, with respect to the sup-norm) around the 
vector Cil VI + Ci2 V2 + ... + Cin V n , which proves what we wanted. 0 

ProbleIll 202 Draw a picture to explain the proof we just gave. It should clarify 
things immensely. 

The converse of this proposition is also true: any locally compact normed 
vector space over Ik is of necessity finite-dimensional. This is harder to prove, 
however, so we leave it to the reader to puzzle it out or look it up. 

In contrast to the finite-dimensional case, the theory of infinite-dimensio
nal normed vector spaces is quite rich and complex. It is the starting point 
of the field called "functional analysis," which has a long and distinguished 
history. Given our point of view, of course, we would mostly be interested 
in non-archimedean functional analysis, which is a much younger, but still 
very interesting, subject. We refer the interested reader to the references (see 
[Ami75, BGR84, Mon70, Sch84, vR78]). 

5.3 Finite Field Extensions 

We now go on to what we are really interested in, which is considering ex
tensions of the field Qp. These are simply fields K containing Qp. For 
example, if 2 is not a square in Qp, we might want to consider the extension 
K = Qp( v'2). More generally, we might want to obtain K by adjoining a 
root of some irreducible polynomial, or even to consider a field like Qp(X) 
(rational functions with coefficients in Qp). For this section, we will restrict 
ourselves to finite extensions (the definition follows just below). 

So let K be a field containing Qp. This means, among other things, that 
K is a vector space over Qp, and we say that K is a finite extension of Qp if its 
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dimension as a Qp-vector space is finite. We will write [K : Qp] = dimQlp K, 
and call this number the degree of Kover Qp. We want to consider absolute 
values on K, but to keep things interesting we will require that these absolute 
values extend the p-adic absolute value on Qp- In other words, we are looking 
for a function I I : K ~ IR+ which is an absolute value, and hence satisfies 
the usual properties: 

i) Ixl = 0 if and only if x = 0, 

ii) IxYI = Ixllyl for any x, y E K, 

iii) Ix + yl S Ixl + Iyl for any x, y E K, 

and that also satisfies the extra condition that 

iv) IAI = IAlp whenever A E Qp. 

There are several things to note. First, any such function will be a norm on 
K as a Qp-vector space (restrict x to Qp in the second property, and we have 
the defining properties of a norm). Second, the absolute value I I will have 
to be non-archimedean, since this depends only on the absolute values of the 
elements of Z, which are in Qp (see Theorem 2.2.2). 

We begin by showing that if such an absolute value exists, it must have 
certain properties. Later, we will use these properties to obtain a construction 
which shows that the extension we are looking for does exist.4 

The first thing is easy: 

Proposition 5.3.1 Let K be a finite extension of Qp. If there exists an 
absol'ute value lion K extending the p-adic absolute value on Qp, then 

i) K is complete with respect to I I, and 

ii) we can take the limit of a sequence in K by taking the limits of the 
coefficients with respect to any given basis {Xl, X2, ... , x n } of K as a 
Qp-vector space. 

In particular, the topology on K induced by I I is simply the unique topology on 
K as a normed Qp-vector space, and therefore is independent of the particular 
choice of absolute value. 

PROOF: Obvious, of course, because all norms on a finite-dimensional vector 
space are equivalent. The statement about convergence just says that they 
are equivalent to the sup-norm with respect to any given basis. 0 

4This is another standard mathematician's ruse: study the properties an object must 
have if it exists, and this may lead to a proof that it does exist. St. Anselm would 
understand. 
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Problem 203 Let p = 5. Check that 2 is not a square in Qs. Let K = Qs( vl2). 
Give an example of a norm on K which is not an absolute value. Can you arrange 
things in your example so that the norm gives the same as the 5-adic absolute value 
when computed on elements of Qs? 

A very important fact follows from the Proposition. 

Corollary 5.3.2 There is at most one absolute value on K extending the 
p-adic absolute value on Qp. 

PROOF: Suppose I I and II II are two absolute values on K which extend the 
p-adic absolute value. We first show that they are equivalent5 (as absolute 
values), and then we show that they are identical. 

To show that I I and II II are equivalent, we need to show that for any 
x E K, we have 

Ixl < 1 -¢=} Ilxll < 1. 

To see this, remember that Ixl < 1 if and only if xn -+ 0 with respect to 
the topology defined by II, and similarly that Ilxll < 1 if and only if xn -+ 0 
with respect to the topology defined by II II. But we already know that I I 
and IIII are equivalent as norms on the vector space K, and hence define the 
same topology. Therefore, we have convergence with respect to one absolute 
value exactly when we have convergence with respect to the other, and this 
proves our claim. (Notice how seriously the field structure, rather than just 
the vector space structure, comes into that argument.) 

This shows that II and II II are equivalent absolute values on K; according 
to Lemma 3.1.2, this means that there is a positive real number a such 
that we have Ixl = Ilxll'" for every x E K. But Ixl and Ilxll must be equal 
whenever x E Qp, since both absolute values extend the p-adic absolute 
value; computing both at x = p shows that we must have a = 1, i.e., the two 
absolute values are the same. 0 

We know, then, that there can be at most one extension of the p-adic abso
lute value to K, and that K will be complete with respect to that extension. 
None of this establishes, however, that such an extension does exist.6 To 
show the existence of the absolute value, we will need to give a construction. 

One consequence of the uniqueness, however, should be noted (and will 
be used when we construct the absolute value). It is simply this: suppose 
that we have two extensions K and L, one containing the other, so that, say, 
Qp C L C K, and suppose that we have found absolute values IlL on Land 
I IK on K, both extending the p-adic absolute value on Qp. The restriction 
of I IK to elements of L is an absolute value on L which extends the p-adic 

sThe definition is at the beginning of Chapter 3; see especially Lemma 3.1.2. 
6We do know that there are many vector space norms on K, and we can arrange for 

these to have the right value on elements of IQp, but it is not at all clear that any of these 
norms will be an absolute value, Le., will work well with the multiplication in K. 
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absolute value; by uniqueness, it must be the same as IlL. In other words, if 
x E L c K, then 

IxlL = IxIK. 
In words, the absolute value of x does not depend on the context. We will use 
this, when defining lxi, in two different ways: at times we will want to work 
in Qp(x), the smallest extension of Qp containing x; at other times, we will 
want to work in a bigger field that may have nicer properties. 

In order to be able to give the construction, we need to recall a few facts 
from the theory of field extensions. We assume that the reader has met these 
concepts before, and hence only sketch out the basic facts; for more details, 
see any standard text on abstract algebra. 

So let K and F be fields, and assume that F c K and that [K : F] is 
finite; we will say that KIF is a finite field extension. Recall that we are 
always assuming that our fields have characteristic zero. 

Let C be any algebraically closed field containing F (or, to be fancy, 
fix an inclusion of F into such a field C, and identify F with its image 
under the inclusion.). We will say the field extension KIF is normal if all 
the (necessarily injective) homomorphisms7 a : K '-t C which induce the 
identity (or, if we're being fancy, our fixed inclusion) on F have the same 
image. Another way to say this is to identify K with one of its images, and 
then say that it is normal if every a maps K to itself. If KIF is normal, then 
we can think of a as an automorphism K --+ K which induces the identity 
on F. To make a picture, any such a fits into a diagram like this: 

C~C 

t t 
K~K 

t t 
F=F 

where the vertical arrows are inclusions. 
When KIF is normal, it is clear that the choice of C doesn't much matter, 

since any a maps K to itself anyway. We call a map a : K --+ K which 
induces the identity on F an automorphism of the extension KIF. It is known 
that when KIF is normal (and of characteristic zer08 ) the automorphisms 
of KIF form a finite group9 whose order is equal to the degree [K: F] (this 
group is called the Galois group of the field extension). 

The following problems give a few examples. 

7Recall that a field homomorphism is a mapping that (i) sends 1 to 1, and (ii) works 
well with the field operations, so that O"(x + Y) = dx) + O"(Y) and O"(xy) = O"(x)O"(Y), It is 
a nice exercise, especially recommended to the reader who is unsure of his footing at this 
point, to show that such a function must always be injective. 

BIn characteristic p, an extra condition, called "separability," is needed. 
9It is easy to prove that they form a group, and makes a nice exercise. 
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Problem 204 Let F = Q and K = Q( ij2). Show that K/ F is not a normal 
extension by taking C = C, considering K as a subfield of R (and hence of q in 
the obvious way, and noting that any (J' : K ----+ C must map ij2 to a cube root of 
2 ... what are the choices? 

Problem 205 Let F = Q and K = Q(i), where, as usual, e = -1. Show that this 
extension is normal. In fact, show that any extension that is obtained by adding to F 
the square root of some element will be normal. (Hint: there are only two possibilities 
for (J'.) 

Problem 206 Let F = Q and K = Q( ij2, (), where 

(= -l+iV3 
2 

is a cube root of 1. Show that K/ F is a normal extension. Show also that K is the 
smallest normal extension of Q containing ij2. 

Normal extensions are very nice, and it is comforting (and useful) to know 
that the process suggested above in the case of Ql( ~) and Ql( ~, () works in 
general: given any finite extension KIF, there exists a finite normal extension 
of F containing K. The smallest such is called the normal closure of KIF. 
This will be useful in what follows, because it means that to construct the 
absolute value of an element x E K we might as well assume that K is a 
normal extension (otherwise just replace K by its normal closure, since the 
absolute value does not depend on context). 

The crucial fact that we will need is that there exists a function 

N K / F : K --+ F, 

which is called the norm from K to F. (It is a bit unfortunate that this 
"norm" has the same name as the vector space "norm," but both terms have 
been standard for such a long time that there is no chance of ever changing 
them. Watch out for the context to avoid confusion.) This will be useful 
because it gives a natural way to "go down" from elements of the bigger field 
K to elements of F. 

The norm function can be defined in several ways, each useful in certain 
contexts; here are three: 

i) Take a E K, think of K as a finite-dimensional F-vector space, and 
consider the F-linear map from K to K given by multiplication by a. 
Since this is linear, it corresponds to a matrix. Then we define NK/F(a) 
to be the determinant of this matrix. 

ii) Take a E K, and consider the sub extension F(a), i.e., the smallest 
field containing both F and a (this is clearly a sub field of K). Set 
r = [K : F(a)] to be the degree of K as an extension of F(a). Let 

f(X) = xn + an_1Xn- 1 + ... + a1X + ao E F[X] 
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be the minimal polynomial of a over F, that is, the lowest degree monic 
polynomial with coefficients in F such that /(a) = O. Then we define 
NK/F(a) = (-l)nra(j. 

iii) Suppose the extension KIF is normal. Then we can define NK/F(a) 
to be the product of all the o-(a), where (T runs through the (finite) set 
of all the automorphisms of KIF. 

Before we discuss why these definitions are equivalent, note some useful 
facts. First, if a E F (rather than in the bigger field K), then N(a) = an, 
where n = [K : F] is the degree of the extension. (This is essentially obvious 
from any of the definitions-check!) Next, norms are multiplicative. This 
is probably easiest to see from the first definition, since determinants are 
multiplicative, but it's pretty obvious from the last one, too. (Less so for the 
middle definition-can you give a direct proof using that version?) In any 
case, we will need to know that 

for any a, f3 E K. Notice, by contrast, that the norm of a sum has no clear 
relation to the norms of the summands. 

The equivalence of these definitions is not hard to prove; we suggest that 
the reader who has not seen it proved work through the next few exercises. 

Problem 207 Prove the equivalence of the first two definitions in the case that K = 
F(a), by considering the basis of K which consists of {I, a, a 2 , ... ,an - 1 }. 

Problem 208 Using the first definition, show that if we have three fields Fe L c K, 
then, for any a E K, we have 

(Suggestion: one can make a basis for Lover F by multiplying all elements of a basis of 
Lover K by all elements of a basis of Kover F. This will give the matrix corresponding 
to multiplication by a a kind of "block structure.") Use this to conclude that the first 
two definitions are equivalent also when K is bigger than F(a). You will need the two 
facts mentioned above. 

Problem 209 Suppose K/ F is normal and that K = F(a). Show that the images 
(T(a) as (T runs through the automorphisms of K/ F are exactly the roots of the poly
nomial f(X). (It's easy to see that any (T(a) is a root-just compute O"(f(a))-but 
it's less clear that for each root there is a unique 0" for which O"(a) is equal to that 
root.) Conclude that the second and third definitions are equivalent in this case. 

Problem 210 Finish off the proof that all three definitions give the same answer. 
(One loose end to consider is the case where K/ F is normal, but K is not equal to 
F(a). What then?) 
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Problem 211 Suppose KIF is not normal. Can you give a version of the third 
definition that makes sense? 

After all that theory, we need some concrete examples to keep us afloat. 
Let's take a really easy one, and put F = 1Q5, K = 1Q5( v'2} Take a generic 
element a + bv'2 E K; let's compute its norm using all three definitions: 

i) A basis for Kover 1Q5 is {I, v'2}. The linear map "multiplication by 
a + bv'2" maps 1 to a + bv'2 and V2 to 2b + aV2, so its matrix with 
respect to our basis is 

[a 2b] 
b a ' 

which has determinant a2 - 2b2. Therefore, NK/F(a+ bv'2) = a2 - 2b2. 

ii) We will have r = 1 unless b = 0, in which case r = 2. If b = 0, we 
have a = a, whose minimal polynomial is X - a, and the norm is then 
(_1)2a2 = a2. If b -=I- 0, we must work out the minimal polynomial; it 
must be of degree two. Since (a + bv'2)2 = a2 + 2b2 + 2abv'2, we will 
get zero by combining as follows: 

(a + bv'2)2 - 2a(a + bv'2) + (a2 - 2b2) = 0. 

(Can you see how that was found?) Hence, the minimal polynomial is 

and the norm is a2 - 2b2. Thus, whether b is zero or not, we have 
NK/F(a + bV2) = a2 - 2b2. 

iii) Finally, we have two automorphisms: the identity, and 

a : a + bv'2 f-4 a - bv'2. 

The product of the images of a + bv'2 is 

so that once again we have NK/F(a + bV2) = a2 - 2b2. 

The general case is nowhere near as easy, of course. Here are a few more 
relatively simple examples: 

Problem 212 Do the same for 

i) a general quadratic extension Qp(y'n) , 

ii) some specific elements of the extension Q( ~, () with ( = (-1 +iV3) 12 (notice 
that this is an extension of degree 6; working with the general element wouldn't 
be too pleasant). 
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To see why the norm is going to playa central role, notice the following. 
Suppose K /Qp is a normal extension, and let (J be an automorphism. Let I I 
be an absolute value on K. Then the function x 1-+ 1(J(x) I is also an absolute 
value on K (check!), and also gives the p-adic absolute value over Qp, since 
(J induces the identity on Qp. But we have shown that there is only one such 
absolute value! Thus, we must have 1(J(x)1 = Ixl for any x E K. Multiplying 
over all the (J'S (and remembering that there are exactly n = [K : Qp] of 
them) we get that 

Now, since the product is equal to the norm, this translates to 

or, taking the root, 

Ixl = yiINK/lQp(x)l. 

But this last gives a formula which we can compute just from the knowledge 
of the p-adic absolute value, since the norm is an element of Qp! 

So far, that only works for normal extensions, but note the following: 

Lemma 5.3.3 Let Land K be finite extensions of Qp which form a tower: 
Qp C L C K. Let x E L. Set m = [L: Qp] and n = [K: Qp]. Then 

yiINL/lQp(x)lp = yiINK/lQp(x)lp" 

PROOF: We have 
NK/F(X) = NL/lQp (NK/dx )) , 

and NK/L(X) = x[K:Ll. Remembering that [K : Qp] = [K : L][L : Qp] and 
plugging everything into the formulas gives the equality. 0 

This is very nice, since it says that the value of yiINK/lQp(x)lp is the 

same for any field K containing x (as above, n = [K : Qp]). In particular, 
this shows that it must be equal to the absolute value of x also when the 
extension is not normal (pass to the normal closure!). In other words, we 
have proved the following: 

Proposition 5.3.4 If there is an absolute value on K extending the p-adic 
absolute value, then it must be given by the formula 

where n = [K : Qp] is the degree of the extension. 
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Notice that the fact that the value of our formula does not depend on the 
choice of field containing x matches exactly the fact that the same is true of 
the absolute value (if it exists). This is encouraging, since we want to prove 
that the formula does define an absolute value. We are now, finally, in a 
position to prove that. The proof we give is taken from [EHH+9l]. 

Theorem 5.3.5 Let K/'Qp be a finite extension of degree n. The function 
I I : K --+ IR+ defined by 

is a non-archimedean absolute value on K which extends the p-adic absolute 
value on 'Qp. 

PROOF: Several things are immediate. First, Ixl = 0 will only happen 
if NK/Qp(x) = 0, which (using the first definition of the norm) will only 
happen if multiplication by x is not invertible; since K is a field, that only 
happens if x = O. Next, since NK/Qp(xy) = NK/lQJp(x)NK/lQJp(Y), we will 
certainly have IxYI = IxIIYI. Finally, if x E 'Qp then NK/lQJp(x) = xn , so that 

Ixl = vllxl~ = Ixlp · 

It remains only to show the non-archimedean inequality, Le., that 

Ix + yl ~ max{lxl, Iyl} 
for any x, y E K. Dividing through by y, we see that this amounts to showing 
that for any x E K we have 

Ix + 11 ~ max{lxl, I}, 

and this will follow from 

Ixl ~ 1 ===} Ix - 11 ~ 1. 

Proof that this is sufficient: To see this, notice that x + 1 = -( -x - 1), so 
that if this implication is true, then we also have 

Ixl ~ 1 ===} I - xl ~ 1 ===} I - x-II = Ix + 11 ~ 1. 

Now just consider cases: if Ixl ~ 1, then max{lxl, I} = 1, and the implication 
proves the inequality; if Ixl > 1, then we get II/xl < 1, which we are assuming 
yields 11 + l/xl < 1. So we have 

IX;ll = 11+~1 ~ 1, 
which says Ix + 11 ~ lxi, which is what we want. So we have shown that it is 
sufficient to show, for every x E K, that 

Ixl ~ 1 ===} Ix - 11 ~ 1. 
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So let's prove that this is true. Looking at the definition, we see that 
Ixl :::; 1 will happen exactly when INK/lQ!p(x)lp :::; 1. Hence, what we need to 
show is that 

INK/lQ!p(x)lp:::; 1 ===} INK/lQ!p(x -l)lp:::; 1, 

or, in more algebraic terms, that 

We will do this by using the definition of the norm in terms of the minimal 
polynomial. By the lemma, we may assume that K = IQlp(x) is the smallest 
field containing x (and note that we will always have IQlp(x) = IQlp(x - 1), 
since any field containing x will also contain x-I and vice-versa). Let 

be the minimal polynomial for x. Then the minimal polynomial for x-I is 
clearly 

f(X + 1) = Xn + (an-l + n)Xn- 1 ..• + (1 + an-l + ... + al + ao) 

(because clearly f(x-1) = 0 and the degree is right!). Thus, using the second 
definition for the norm, we have 

and 
NK/lQ!p(x - 1) = (-l)n(1 + an-l + ... + al + ao). 

What we want to prove will follow, then, from the assertion that if 

is an irreducible polynomial and ao E Zp, then we have 

1 + an-l + ... + al + ao E Zp. 

In fact, we will prove something that is even better. 

Lemma 5.3.6 If f(X) = xn + an_1xn-l + ... + a1X + ao is a monic 
irreducible polynomial with coefficients in IQlp and ao E ZPI then all of the 
coefficients an-I, ... aI, ao belong to Zp. 

PROOF OF THE LEMMA: This is the crux of the matter, and we follow 
the proof given by Neukirch in [EHH+91]. We will use the second form of 
Hensel's Lemma, proved way back in Chapter 3, to show that if some of the 
coefficients are not in Zp then f(X) will be reducible. 

So let f(X) = xn+an_lxn-l + ... +a1X +ao, and assume that ao E Zp 
but some ai rf:. Zp- Choose m to be the smallest exponent such that pmai E Zp 
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for every i, and "clear denominators" by multiplying the whole polynomial 
by pm. Set 

g(X) = pm f(X) = bnXn + bn_1Xn- 1 + ... + b1X + bo, 

so that bi = pmai . Since f(X) is monic, bn = pm is divisible by p; since 
ao E Zp (our main hypothesis), bo = pmao is also divisible by p; by our choice 
of m, all the bi are in Zp, and at least one is not divisible by p. Let k be the 
smallest i such that bi is not divisible by p. Then we have a factorization 

and the two factors are clearly relatively prime modulo p. By the second 
form of Hensel's Lemma, it follows that g(X) = pm f(X) is reducible, and 
therefore so is f(X) itself. This proves the lemma, and therefore also the 
theorem. 0 

This gives the extension we needed. In other words, given any finite 
extension K of Qp, we have shown that there exists a unique absolute value 
on K which extends the p-adic absolute value on Qp ; we call it, of course, 
the p-adic absolute value on K. We know that K is complete with respect 
to this absolute value. 

To complete this section, we go on to consider an algebraic closure of 
Qp. This is a field Qp which contains all the roots of all the polynomials 
with coefficients in Qpo To construct it, we just take the union of all the 
finite extensions of Qp (and then we prove that this is an algebraically closed 
field) . 

We claim that we have already constructed an absolute value on the 
algebraic closure. The point is this: given any x E Qp, the extension Qp(x) 
is finite (its degree is the degree of the minimal polynomial of x over Qp). 
Since x then lives in the finite extension Qp(x), we can define Ixl by using the 
unique extension ofthe p-adic absolute value to Qp(x). But we already know 
that this absolute value does not depend on the field we take it in; in other 
words, it just depends on x itself (as the root of some polynomial over Qp). 
Thus, it makes sense to say it is the absolute value of the element x E Qp. 
This shows that we have actually defined a function 

which extends the p-adic absolute value, and it is easy to see that this function 
is an absolute value. Our construction, then, shows that there is a unique 
p-adic absolute value on Qp-

ProbleIll 213 Prove that the function we have defined is an absolute value, i.e., that 
it satisfies the three conditions listed in the beginning of this section. 

It is not clear (in fact, it is not true) that Qp is complete with respect to 
this absolute value, because Qp is an infinite extension of Qp. Proving this 



154 5 Vector Spaces and Field Extensions 

will take knowing a lot more about the absolute value on Qp. For now, we will 
content ourselves to showing that Qp is indeed an infinite extension of Qp. 
To do this, it is enough to show that that there are irreducible polynomials of 
arbitrarily large degree over Qp. Since the root of an irreducible polynomial 
of degree n generates an extension of degree n, this means that Qp contains 
extensions of degree n for every n, and hence is not a finite extension. We 
conclude this section by showing that this is in fact the case. We first need 
the following lemma: 

Lemma 5.3.7 Suppose that f(X) E Zp[X] factors (in a non-trivial way) in 
Qp[X], so that 

f(X) = g(X)h(X) 

with g(X), h(X) E Qp[X] and non-constant. Then there exist non-constant 
polynomials go(X), ho(X) E Zp[X] such that f(X) = go(X)ho(X). 

PROOF: If k(X) = anxn + ... + alX +ao E Qp[X] is any polynomial, define 

This is a kind of p-adic valuation on polynomials, since w(k(X)) is the largest 
power of p that divides all the coefficients of k(X). It is easy to see that 
for a E Qp we have w(ak(X)) = vp(a) + w(k(x)). Also, it is clear that 
k(X) E Zp[X] if and only if w(k(X)) ~ O. We will use the "valuation" w to 
prove the lemma. 

Step 1: If the lemma is true for the case when w(f(X)) = 0, then it is true 
in general. 

Proof of step 1: Consider the general case, in which all we know is that 
w(f(X)) ~ O. By the definition of w, there exists some number a E Qp 
such that w(f(X)) = -vp(a) (just take a to be the inverse of the coefficient 
with the smallest valuation); since we know f(X) E Zp[X], we know that 
a-I E Zp. Then it is clear that w(a f(X)) = 0; set f(X) = a f(X) and, say, 
g(X) = ag(X), so that j(X) = g(X)h(X) and w(j(X)) = O. 

If we know that the theorem is true in this case, then we can decompose 
j(X) as a product of two polynomials in Zp[X], say, j(X) = Co(X) Ho(X). 
Then we have 

f(X) = a-I j(x) = a-ICo(X) Ho(X), 

and, since we know a-I E Zp, this decomposition is of the kind we want: just 
absorb the a-I into one of the factors by putting go(X) = a-ICo(X) and 
ho(X) = Ho(X), and we get the decomposition we want: 

f(X) = go(X) ho(X). 

This proves step 1. In other words, we may assume, without loss, that 
wo(f(X)) = 0, i.e., that at least one coefficient of f(X) is a p-adic unit. 
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Step 2: The lemma is indeed true when w(f(X)) = O. 

Proof of step 2: Assume, then, that w(f(X)) = O. Using the same rea
soning as above, we can find bE Qp such that w(bg(X)) = 0 and e E Qp 
such that w(eh(X)) = O. If we write gl(X) = bg(X) and h1(X) = eh(X), 
then we can write 

Write k(X) E lFp[X] for the reduction of a polynomial k(X) E Zp(X) modulo 
p. We have set things up so that .ih(X) and h1 (X) are both non-zero; it 
follows that 11 (X) is also non-zero, and hence that w(/I (X)) = w(be f(X)) = 

O. Since we had already arranged things so that w(f(X)) = 0, it follows that 
vp(be) = 0, so that be is a p-adic unit. Then we have 

Taking go(X) = (be)-lgl(X) and ho(X) = h1(X) then gives the desired 
factorization. 0 

When everything is assumed monic, the lemma is even easier: 

Problem 214 Suppose that f(X) E Zp[X] is monic and factors as a product f(X) = 
g(X) h(X), with g(X) and h(X) E <Q!p[X] and monic. Show that then g(X) and h(X) 
must be in Zp[X]. (Hint: the main difference between this and the Lemma is that we 
are assuming that the factors are monic.) 

In particular, we get the following: 

Corollary 5.3.8 Let f(X) E Zp[X] be a monic polynomial whose reduction 
modulo p is irreducible in lFp[X]. Then f(X) is irreducible over Qp. 

PROOF: If f(X) factors over Qp, then it factors over Zp by the Lemma; re
ducing the factorization modulo p gives a factorization over lFp, which cannot 
~~. 0 

Problem 215 That was pretty quick; fill in the details. For example, how do we know 
that the factorization modulo p is non-trivial? 

Problem 216 Is the assumption that f(X) is monic really necessary? 

Notice that this Corollary has a kind of converse in the "second form" of 
Hensel's Lemma (Theorem 3.4.6), which says that, under certain conditions, 
factorizations over lFp lift to factorizations over Zp-
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It is well known that there are many irreducible polynomials in IB'p[X]. In 
fact, for every n one can show10 that there is an irreducible polynomial of 
degree n in IB'p[X] whose roots generate the unique extension of degree n of 
IB'p- Choosing any lift of such a polynomial to a monic polynomial in Zp[X] 
gives an irreducible polynomial of degree n in Qp[X]. Adjoining a root of this 
polynomial then gives an extension of Qp of degree n, which in some sense 
"comes from" the extension of lFp . So we have proved that 

Corollary 5.3.9 For each integer n ;::: 1 there is an extension of Qp which 
has degree exactly n and which "comes from" the unique extension of degree 
n of the finite field lFp . 

In particular, 

Corollary 5.3.10 The algebraic closure Qp is an infinite extension ofQp. 

We should note the contrast, at this point, between lR and Qp- The alge
braic closure of lR is C, which is an extension of degree two, and is therefore 
complete with respect to the oo-adic absolute value. This is a point, then, at 
which the p-adic and the classical theories diverge quite sharply. 

Before we consider the algebraic closure in more detail, we need a better 
grasp of the properties of finite extensions of Qp- That is the point of the 
next section. Before we delve in, however, we prove one final result about 
polynomials that gives us still more finite extensions of Qp-

Proposition 5.3.11 (Eisenstein Irreducibility Criterion) Let 

be a polynomial satisfying the conditions 

ii) lail < 1 for 0:::; i < n, and 

iii) laol = lip· 

Then f(X) is irreducible over Qp-

PROOF: Suppose f(X) is reducible. By the Lemma, it is then reducible over 
Zp, i. e., there exist g(X), heX) E Zp[X] such that 

f(X) = g(X) heX). 

lOThis is one of the few facts about finite fields that we will need to make use of in this 
chapter. Most of them are easily proved-see any introductory book on "abstract algebra" 
for the details. What we are using here is the fact that, for each n 2': 1, the finite field 
IFp has a unique extension of degree n. This extension is a field with pn elements. It is 
usually denoted by IF pn, and, since it is a separable extension, there exists a polynomial 
f(X) such that IFpn is obtained by adjoining a root of f(X) to IFp. 
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Write 

and 

h(X) = csXs + ... + C1X + Co, 

with r+s = ni since lanl = 1 and an = brcs, we must have Ibrl = Icsl = 1. As 
above, use bars to denote reduction modulo Pi we have f(X) = g(X) h(X). 
On the other hand, the hypotheses imply that f(X) = o,nxn. Then we 
must have g(X) = brxr and h(X) = csXs. In particular, both bo and Co 

must be divisible by p. But then ao = boco will be divisible by p2, so that 
laol ::; 1/p2, contradicting our third assumption. This shows that f(X) must 
be irreducible. 0 

The reader will note that the irreducible polynomials furnished by the 
Eisenstein criterion (we might call them Eisenstein polynomials) are certainly 
reducible modulo p (very reducible: modulo p, they look essentially like a 
power of X). In other words, the irreducible polynomials provided by this 
criterion are very different from the ones we found before. So what we have 
here is another infinite family of finite extensions of Qp-

Problem 211 Given that Eisenstein polynomials factor modulo p, why can't we use 
Hensel's Lemma to factor them in 12::p? 

To conclude this section, here are a few more problems about polynomials: 

Problem 218 Is the function w defined in the proof ofthe Lemma above a valuation? 
(Hint: the difficult bit is to show that w(J(X)g(X» = w(J(X» + w(g(X». Notice 
that the proof of the Lemma would be greatly simplified if we could use this identity.) 

Problem 219 (This needs Galois theory.) In the situation of Corollary 5.3.9, show 
that the extension of Qp is normal, and that its Galois group is isomorphic to the Galois 
group of the corresponding extension of IFp. 

Problem 220 Use Lemma 5.3.7 above to show "Gauss's Lemma," which says that if 
a polynomial f(X) E 12::[X] factors over Q, then it factors over 12::. (This may be taken 
as another example of how to use "Iocal"-i.e., p-adic-methods to prove "global" 
results. ) 

Problem 221 Can the Eisenstein criterion also be turned into a "global" result? In 
other words, does it give us a way to determine irreducibility over Q? 

Problem 222 Does the Lemma about factorizations over Qp and 12::p extend to poly
nomials in several variables? If so, does Problem 220 also extend to that case? 
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5.4 Properties of Finite Extensions 

The point of this section is to gather information about finite extensions of 
Qp. On one level, what we want to say is that much of the structure we 
have found in Qp extends without effort. Our main interest, however, is to 
see what information this gives us about finite extensions of Qp. To help us 
understand, we will keep a few standard examples in mind as we go along; 
at each step, we will consider (usually in a problem) how the result that has 
just been proved looks in the particular case of our examples. 

Here are the three examples: 

i) Let p = 5; we have checked that 2 is not a square in Q5, so we let 
FI = Q5( J2). This is an extension of degree 2, with basis {I, J2}. 

ii) Again, let p = 5. It is clear that 5 itself is not a square in Q5' We let 
F2 = Q5( vis). This is also an extension of degree 2, with basis {I, vis}. 

iii) Our third example is more complicated. We let p = 3. We adjoin to 
Q3 a cube root of unity and a square root of 2: F3 = Q3((, J2), where 
(3 = 1 but ( =I=- 1. F3 is an extension of Q3 of degree 4; both Q3 (() and 
Q3( J2) are subextensions of degree 2. 

In all of this section, K will be a finite extension of degree n of Qp, and we 
will write I I = I Ip for the p-adic absolute value (extended to K as above). We 
already know that the absolute value makes K a locally compact topological 
field, that K is complete with respect to its absolute value, and that the 
absolute value on K is given by the formula 

Our next step is to show that this absolute value is "discrete." 
Recall that in Qp, the absolute value of any non-zero element was always 

of the form pV, with v an integer; in fact, this is what allowed us to define 
the p-adic valuation vp. Looking at the formula for the absolute value on K, 
we immediately see that the absolute value of any non-zero x E K is of the 
form pV, where v E ~Z, since it is the n-th root of the absolute value of some 
element of Qp. This spurs us on to define: 

Definition 5.4.1 Let K be a finite extension of Qp, and let I I be the p-adic 
absolute value on K. For any x E K, x =I=- 0, we define the p-adic valuation 
vp(x) to be the unique rational number satisfying 

Ixl = p-vp(x). 

We extend the definition formally by setting vp(O) = +00. 

It is easy to see that vp is a valuation, in the sense we defined: 
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i) vp(x+y)::::: min{vp(x),vp(Y)}, and 

ii) vp(xy) = vp(x) + vp(Y). 

As before, we use the standard conventions about how to interpret these 
equations when one of x, y, or x + y is zero. 

It is useful to notice that since we know exactly how to compute the p-adic 
absolute value of an element of K, we also know how to compute vp. Here is 
the formula: for any x E KX, 

This reduces computing vp to computing norms. 

Problem 223 Let x = 1 + 3V2 E Fl. Compute vs(x). Do the same for x = V2, 
x = 1 + 5V2, and x = 5V2. (Hint: the easiest way is probably to consider the images 
under automorphisms to compute the norm, and then use the basic formula.) 

Problem 224 Let x = 4 + v's E F2 Compute vs(x). Do the same for x = v's, 
x = 5 + v's, x=lO - 3v's, x = 1 + v's. 

Problem 225 Let x = V2 E F3 Compute V3(X). Do the same for x = (. x = 1 - ( 
(be careful!), x = 10 - 3V2, x = 2 + 3(. (This problem is a little harder than the 
previous two problems.) 

We know that the image of vp is contained in ~z (in fact, that is obvious 
from the formula above). But we do not yet know exactly what it is. The 
next result tells us what kind of subset of IQ it is. 

Proposition 5.4.2 The p-adic valuation vp is a homomorphism from the 
multiplicative group K X to the additive group IQ. Its image is of the form 
~z, where e is a divisor of n = [K : IQp]. 

PROOF: That vp is a homomorphism is just property (ii) above; its image 
is therefore an additive subgroup of IQ. We already know that the image is 
contained in ~ Z. We also know that the image contains all of Z, since the 
image of vp on IQ; does. Let die (with d and e relatively prime) be in the 
image, chosen so that the denominator e is the largest possible. (This makes 
sense because it is clear that e must be a divisor of n, so that the range of 
possible denominators is bounded.) Now, since d and e are relatively prime, 
there must be a multiple of d which is congruent to 1 modulo e, i.e., we can 
find rand s such that rd = 1 + se. But then 

d 1 + se 1 
r- = --- = - +s 

e e e 

is in the image; since s E Z is in the image, it follows that 1 leis in the image. 
Since e was chosen to be the largest possible denominator in the image, it 
follows that the image must be exactly ~ Z, and we are done. D 
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The image of the p-adic valuation on a field K is called the value group of 
K. The number e is an invariant of the field extension K/Qp, and therefore 
we give it a name: 

Definition 5.4.3 Let K/Qp be a finite extension, and let e = e(K/Qp) be 
the unique positive integer (dividing n = [K : Qp]J defined by 

vp(KX) = .!.Z. 
e 

We call e the ramification index of Kover Qp. We say the extension K/Qp 
is unramified if e = 1. We say the extension is ramified if e > 1, and totally 
ramified if e = n. Finally, we write f = f(K/Qp) = n/e. 

ProbleIll 226 Compute e for the fields Fl. F2 , and F3 . (Hint: we made sure to 
have one example each of unramified, totally ramified, and ramified-but-not-totaliy 
extensions. ) 

The notations e and f are traditional for these two numbers. Notice that 
at this point f has simply been defined as the "other factor" of n. We will 
soon give it a more interesting interpretation. Before we do that, however, 
we need to explore the structure of K a little further. 

In Qp, the number p played a special role, due to the fact that it was 
an element of smallest positive valuation, vp(p) = 1. This meant that any 
element x E Zp with vp(x) > 0 was divisible by p, and in fact, we could 
interpret vp(x) as a multiplicity: any x E Qp can be written as x = pVp(x)u, 
where u is a p-adic unit, i.e., satisfies vp(u) = O. To do something similar in 
K, we need an element whose valuation is exactly l/e. 

Definition 5.4.4 Let K/Qp be a finite extension, and let e = e(K/Qp). We 
sayan element 1C E K is a uniformizer ifvp(1C) = lie. 

Notice that there are many uniformizers, just as there are many elements 
of Zp whose valuation is exactly 1. In what follows, we will choose a uni
formizer 1C, and fix it throughout the discussion. We should remark that in 
the unramified case, we have e = 1, and we can (and usually will) simply 
take 1C = p. 

ProbleIll 227 Find uniformizers for H, F2, and H. (Only F3 takes some thought.) 

Having set this up, we can describe the algebraic structure of K. First of 
all, recall that we defined the valuation ring 

0= OK = {x E K: Ixl ::; 1} = {x E K: vp(x) ::::: O} 

and its maximal ideal 

P = PK = {x E K : Ixl < 1} = {x E K : vp(x) > O}. 
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This, as we saw in Chapter 2, is a local ring, and the residue field is the 
quotient 

Ik = (h/'pK. 

The basic facts about these rings are easy to describe. 

Proposition 5.4.5 Let notations be as above, and fix a uniformizer 7r in K. 
Then: 

i) The ideal 'p K C (9 K is principal, and 7r is a generator. 

ii) Any element x E K can be written in the form x = U7revp (X) , where 
u E (9~ is a unit, and therefore satisfies vp(u) = 0. In particular, 
K = (9K[~]. 

iii) The residue field Ik is a finite extension of IFp whose degree is less than 
or equal to the degree [K : IQp]. In particular, the number of elements 
in Ik is a power of p. (The exact number of elements will be determined 
below.) 

iv) Any element of (9 K is the root of a monic polynomial with coefficients 
in Zp-

v) Conversely, if x E K is the root of a monic polynomial with coefficients 
in Zp, then x E (9K. 

vi) (9K is a compact topological ring. The sets 7rn (9K, nEZ, form a 
fundamental system of neighborhoods of zero in K, which is a totally 
disconnected, Hausdorff, locally compact topological space. 

vii) Let A = {O, CI, C2, •.• , cf} be a fixed set of representatives for the cosets 
of 'p K in (9 K. Then any x E K has a unique representation as a p-adic 
expansion 

00 

x = L ai7ri = a_ m 7r-m + ... + ao + al7r + a27r2 + ... , 
i=-m 

where each ai E A. In other words, every element of K has a unique 
expansion in powers of 7r with coefficients chosen from the "digits" 
0, CI, C2,··· ,Cf· 

Problem 228 Prove the proposition. (Some hints: (i) is a matter of computing vp; 
(ii) is pretty much the same. For (iii), the crucial observation is that if a set of elements 
of C) is linearly dependent over Qp, then the set of their reductions modulo 7r is linearly 
dependent over lFp . Item (iv) was pretty much proved when we constructed the absolute 
value, and (v) is immediate from that construction. The rest is identical to what we 
did for Qp.) 

Problem 229 Work out C)K and Ik for each of our running examples. 
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Given that Ik is a finite extension of lFp, its degree is another natural 
invariant of the extension K/Qp. It turns out, however, to be a number we 
have already introduced. 

Proposition 5.4.6 Still using the notations above, let f = f(K/Qp) be the 
"other factor" of the degree n (see Definition 5.4.3). Then [Ik : lFp] = f, so 
that Ik = IF pi is the finite field with pi elements. 

PROOF: Let m = [Ik : lFp], and let e = e(K/Qp) be the ramification index. 
What the proposition says is that e· m = n = [K: Qp]. First of all, choose 
elements aI, a2, ... am E OK such that their images all a2, .•. am E Ik are 
a basis of Ik over lFp. (In particular, they must be non-zero, so that the a's are 
actually in O~.) As we noted above, the a's are clearly linearly independent 
over Qp (given a dependence relation, scale so that the coefficients are integral 
and at least one is a unit, then reduce modulo ?T; this gives a dependence 
relation over lFp). To prove the Proposition, we show how to complete this 
set to a basis of Kover Qp. 

The idea is to use the uniformizer ?T. Consider the elements 

?Tal, ?Ta2, ••. , ?Tam, 

?T2al, ?T2a2' •.• , ?T2a m , 

... , 

We claim these form a basis of Kover Qp. Note that, if so, the proposition 
follows, since we then have n = e . m. 

Proving our claim requires several steps, but is not hard. First of all, 
if every element of OK is a Qp-linear combination of the ?Tiaj, then so is 
every element of K, since for any x E K we can find a power of p such that 
pTx E OK. 

Now consider x E OK. We will show that x is a Zp-linear combination 
of the elements listed above. First, reducing modulo ?T, we can write x as a 
combination of the aj; in other words, we have 

x = xO,lal + XO,2a2 + ... + XO,mam + a multiple of?T, 

with XO,j E Zp. Now repeat the same reasoning to the multiple of ?T to get 

x = xO,lal + XO,2a2 + ... + XO,mam+ 

+ Xl,l?Tal + Xl,2?Ta2 + ... + Xl,m?Tam + 

+ a multiple of ?T 2 • 
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Repeating this e times, and noticing that 7re and p differ by a unit (because 
they have the same valuation!), we see that our x can be written as 

x = xO,lal + XO,2a2 + ... + XO,mam+ 

+ Xl,l7ral + Xl,27ra2 + ... + Xl,m7ram+ 

+ ... 
+ Xe_117re-1al + Xe-l 27re-1a2 + ... + Xe-l m 7re - 1am+ , , , 

+px' , 

where all the coefficients Xi,j are in IZp and x' E (') K. Now apply the same 
reasoning to x'. This will give new coefficients Xi,j + PX~,j' for which the 
equality holds modulo p2. Continuing in this fashion produces Cauchy se
quences in Qp (in fact, in IZp) for each coefficient; taking the limit, we get 
the expression we want for x as a linear combination of the 7r i aj, which are 
therefore a generating set. 

To show that they are independent, suppose we have a linear dependence 
relation 

with Xi,j E Qp. After scaling, we may assume that the Xi,j are all in IZp 
and that at least one is not divisible by p. Reducing this equation modulo 
7r gives a dependence relation for the tij over lFp; this must be trivial, hence 
the XO,j must reduce to zero, i.e., must be divisible by p. This makes the 
whole relation divisible by 7r; divide through. Notice that XO,j/7r will still 
be divisible by 7r, since we know that XO,j is divisible by p, and p is "like" 
7re . Now reduce modulo 7r again. We know that most of the equation is still 
divisible by 7r, and using the same reasoning as before, we can conclude that 
the XI,j must all be divisible by p. Continuing in this fashion, we get that all 
the Xi,j are divisible by p, which contradicts our initial assumption. It follows 
that no such linear dependence relation exists, and we are finally done. D 

After that long proof, it is well to remind ourselves of what we have 
obtained. We have shown that the degree n = [K : Qp] of a finite extension 
of Qp breaks up as a product n = e . f, where e measures the change of the 
image of the p-adic valuation vp and f = [Jk : lFp] measures the change in the 
residue field. 

Problem 230 This was a messy proof. It's probably wise to work out the precise 
details. 

Our next result is a partial description of the totally ramified extensions 
of Qp. It is a standard result in field theory that any extension of a field 
of characteristic zero (such as Qp) is generated by adjoining the root of an 
irreducible polynomial. In the case of totally ramified extensions, we can say 
exactly what kind of polynomial. 
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Proposition 5.4.7 Let KIQp be a totally ramified finite extension of Qp, 
so that e(KIQp) = n = [K: Qp]. Then K = Qp(w), where w, as above, is a 
uniformizer. Furthermore, w is a root of a polynomial 

f(X) = Xn + an_1Xn- 1 + ... + a1X + aD 

which satisfies the conditions of the Eisenstein criterion, i.e., plai for 0 < 
i < n andp2 faD. 

PROOF: Let w be a uniformizer, so that vp(w) = lin, or, equivalently, 
Iwl = p-1/n. Take f(X) to be the minimal polynomial for w over Qp- Recall 
that we can compute the absolute value of w in terms of its norm. It goes 
like this: if the degree of f(X) is s (which must be a divisor of n) and its last 
coefficient is aD, we set r = n Is, and then the norm of w is ( -1) n ao. Once we 
know the norm, we can compute the absolute value; this gives the equation 

p-1/n = Iwl = ~ = ~. 
Now, since aD is in Qp, its absolute value is an integral power of p. Looking 
at the equation, we see that we must have s = n (so that f(X) is of degree 
n) and laol = p-1. 

The fact that the degree is n shows that K = Qp(w), and laol = p-1 is 
exactly what we claimed about this coefficient of f(X). It remains to show 
our claim about the other coefficients. For this, let W1 = W, W2, •.. ,Wn be the 
roots of f(X). Note, first, that all of the roots have the same minimal poly
nomial, hence the same norm, hence the same absolute value. In particular, 
we have IWil < 1 for every i. Now, the coefficients of f(X) are combinations 
of the roots (write f(X) as the product ofthe (X -Wi) and expand); it follows 
that we must have lajl < 1 for 1 S j S n, and we are done. D 

Problem 231 In the case of H, which is totally ramified, what is the Eisenstein 
polynomial? 

Problem 232 Let p = 3 and let K = Q3() be the field obtained by adjoining a cube 
root of unity. Check that this is a totally ramified extension of degree 2, and find the 
Eisenstein polynomial given by the Proposition. 

This is quite a remarkable result, since it gives a rather precise description 
of the ramified extensions of Qp. Once we have it, it is natural to look for 
a similar result for unramified extensions. It turns out that those are even 
simpler, but to be able to prove that we will have to have one more tool in 
our kit. That tool is Hensel's Lemma. 

Theorem 5.4.8 (Hensel's Lemma) Let K be a finite extension ofQp, and 
let w be a uniformizer. Let F(X) = aD + a1X + a2X2 + ... + anXn be a poly
nomial whose coefficients are in (9 K. Suppose that there exists an "integer" 
a1 E (9 K such that 
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and 
F'(al) =t- 0 (mod 71"), 

where F'(X) is the (formal) derivative of F(X). Then there exists an integer 
a E OK such that a == al (mod 71") and F(a) = o. 

Recall that 71" is a generator of the maximal ideal P K, so that we can 
also write the conditions as congruences modulo P K, or in terms of absolute 
values. The proof is identical to the one we gave in Chapter 3. 

Problem 233 Prove Theorem 5.4.8. 

Problem 234 Formulate and prove a version of Theorem 3.4.6 (the second form of 
Hensel's Lemma) that works over K. 

Problem 235 Formulate and prove a version of Problem 112 (the stronger form of 
Hensel's Lemma to which we occasionally needed to resort) that works over K. 

The crucial observation, for all three problems, is that there is really 
nothing to do: exactly the same proofs work. 

As before, we can use Hensel's Lemma to obtain roots of unity in K. The 
point is that the non-zero elements of the residue field Ik (which, remember, 
has pf elements) form a cyclic groupll with pf -1 elements. This means that 
for each m dividing pf -1, there are exactly m roots of Fm(X) = xm -1 in 
Ik x. Choosing any lift of these to 0 i gives us m non-congruent "approximate 
roots." This sets us up for Hensel's Lemma, since the derivative is F:"(X) = 

mXm - l , which will be non-zero (m is not divisible by p, and our approximate 
roots are units). Hensel's Lemma gives us m non-congruent (and therefore 
m different) m-th roots of unity in 0i. Since this is true for any m dividing 
pf - 1, it means that K contains the full cyclic group of (pf - l)-st roots of 
unity. In other words: 

Corollary 5.4.9 Let K/Qp be a finite extension, and let f = J(K/Qp). 
Then 0i contains the cyclic group of (pi - l)-st roots of unity. 

Problem 236 Describe what roots of unity are given by this Corollary in each of the 
fields H, F2, and F3. In each case, can you decide whether there are any other roots 
of unity? 

Of course, if K contains the (pi - 1 )-st roots of unity, then it also contains 
the m-th roots of unity for any m dividing pf - 1. We can also turn this 
around: given an m which is not divisible by p, one can always find an J 
such that pf == 1 (mod m) (since the group of invertible elements of 7!../m7!.. 

llThat the non-zero elements of any field form a group is sort of obvious. That the 
non-zero elements of a finite field form a cyclic group follows from the fact that any finite 
subgroup of a field is cyclic, which the reader may have met in her abstract algebra course, 
and which otherwise is a very nice and challenging exercise. 
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is, after all, finite), which means that m divides pf - 1. So by taking fields 
with larger and larger f, we get all the prime-to-p-th roots of unity. 

Except for p-power roots of unity, this description is complete. First, if 
f = f(K/Qp) and K contains any other roots of unity, that is, m-th roots 
of unity for some m which is relatively prime to pf - 1, then they must be 
I-units, since their reduction modulo 7r must be equal to 1. 

Problem 237 (This problem just asks you to verify carefully what we have just as
serted.) Suppose x E K satisfies xm = 1. 

i) Show that x E O.i::-, i.e, that x is a unit in K. 

ii) Show that if m is relatively prime to pI - 1, then x 
xEl+PK. 

1 (mod 7r), so that 

Next, a I-unit can be an m-th root of unity only if m is a power of p. We 
show this by a direct argument. First we make the following useful remark: 

Lemma 5.4.10 If x == 1 (mod 7r), then xP == 1 (mod 7r2 ), and, more gen
erally, XpT == 1 (mod 7rr - 1 ). 

PROOF: An easy exercise on the binomial theorem. Notice that unless e = 1 
we can in fact do much better than is stated. D 

Now it's easy: if <:; is a I-unit, and <:;m = 1 for some m prime to p, then 
we begin with 

<:; == 1 (mod 7r). 

Now choose any r such that pr == 1 (mod m) (this certainly exists, as we 
observed above). Then, taking pr-th powers, we get 

Iterating (or just replacing r by a multiple), we see that in fact <:; is congruent 
to 1 modulo an arbitrarily large power of 7r. It follows that <:; = 1. (Otherwise, 
what would be the valuation of <:; - 1 ?) 

Problem 238 Prove the lemma. 

Problem 239 Push the argument above a little harder to show that if m is prime to 
p then two different m-th roots of 1 will never be congruent modulo 7r. 

Problem 240 We outline an alternative way to show that no I-units can be m-th 
roots of unity if m is prime to p. Suppose ( is a I-unit, and (ffi = 1 for m prime to p. 
Taking a power of (, we get an £-th root of unity (1, where £ is a prime not equal to 
p. Let Xl = 1 - (1 E PK. Then we have 

(1- xd - 1 = O. 

Expand the left hand side, and rearrange to get a contradiction. 
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One interesting way to read the last few paragraphs is to see that they 
tell us something about structure of the I-units, i.e., the elements of U1 

1 + 7rO K. This is clearly a group, since 

(1 + 7rx)(1 + 7rY) = 1 + 7rX + 7ry + 7r2xy, 

and 
(1 + 7rX)-l = 1 - 7rX + (7rX)2 - (7rX)3 + ... 

which clearly converges and belongs to U1 . Similarly, each of the sets Un = 

1 + 7rn OK are subgroups. 

Problem 241 Show that for any n the quotient Un /Un +1 is a p-group (i.e., its order 
is a power of p). (Hint: you need to show that it is a finite abelian group, and that the 
order of a ny element is a power of p.) 

The upshot is that we have obtained an almost complete description of 
the roots of unity in K: if we set f = f(K/Qp), then K contains pi - 1 
non-congruent (pi - I)-st roots of unity, and possibly some p-power roots of 
unity. These last will be I-units. 

We are now ready to go back to what started us on this roots-of-unity 
aside, that is, to describe the unramified extensions of Qp. 

Proposition 5.4.11 For each f there is exactly one unramified extension of 
degree f. It can be obtained by adjoining to Qp a primitive (pi - 1) -st root 
of unity. 

PROOF: Let a be a generator of the cyclic group of non-zero elements of IF pl. 
Then lFpf = lFp(a) is an extension of degree f (check the usual references on 
abstract algebra for the details); let 

g(X) = Xl + al_1XI-l + ... + a1X + ao 

be the minimal polynomial for a over lFp. Lifting g(X) to g(X) E Zp[X] any 
way we like, we get an irreducible polynomial over Qpo If a is a root of g(X), 
then K = Qp(a) is an extension of degree f. The residue field Jk of K clearly 
contains a root of g(X) (the reduction of a modulo PK), hence we must have 
[Jk : lFp ] 2:: f; since, on the other hand, the degree of the residue field is at 
most equal to the degree of K/Qp, we have [Jk : lFp] :<:::: [K: Qp] = f, it follows 
that [Jk : lFp] = f = [K: Qp], so that K/Qp is unramified. We also see that 
Jk = lFpf. 

This shows that there always exists an unramified extension of degree f 
(it is, in fact, the extension we considered at the end of the previous section). 
We still need to show the uniqueness. To do that, we will show that any 
extension K/Qp which is unramified and of degree f will have to be equal to 
the extension obtained by adjoining a primitive (pi - 1 )-st root of unity. 

By the Corollary above, we already know that K must contain all the 
(pi - I)th roots of unity. Hence, to show the equality we want, all we need 
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to do is show that the smallest field extension of Qp which contains the 
(pi - 1 )-st roots of unity is already of degree f, and hence must be all of K. 

So choose {3 to be a primitive (pi - 1 )th root of unity in K. Then we have 

Now, the powers of {3 are exactly all the (pi -1) roots of unity, and we know, 
from the Corollary, that they are all distinct modulo 7r. This means that j3 is 
a (pi - 1 )th root of unity, so that the residue field of the extension Qp({3) /Qp 
contains lFpf = Ik. Since the degree of the residue field extension is certainly 
less than or equal to the degree of the extension of Qp, it follows that the 
degree of Qp({3) over Qp is at least f. Since K/Qp is of degree f, it follows 
that K = Qp ((3), and we are done. D 

Problem 242 For p = 5, consider the extensions Fl = Qs( ';2) and K = Qs( }3). 
Show that they are both unramified and of degree 2. Conclude that they are equal. 
How can this be? The theorem also says that either extension is the same as the one 
obtained by adjoining a primitive 24-th root of unity. Can you find a few terms of the 
5-adic expansion of a primitive 24-th root of unity? (Remember that we can take 7r = 5 
as uniformizer, because we know the extension is unramified, so that the first problem 
is to choose a convenient set of "digits.") 

Problem 243 Find the largest subfield of F3 which is an unramified extension of Q3. 

Problem 244 Let K = Q3(.v2) be the extension of Q3 obtained by a adjoining a 
cube root of 2. Show that this extension is totally ramified. 

One nice thing we can do with this result is to consider the union of all 
these extensions. This will be an infinite extension of Qp, and will contain all 
the unramified extensions ofQp. It is called the maximal unramified extension 
of Qp, sometimes denoted by Q~nr. 

Problem 245 Let m be an integer which is not divisible by p. Show that the maximal 
unramified extension of Qp contains the m-th roots of unity. Conclude that we can 
describe Q~nr as being obtained by adjoining to Qp all the prime-to-p-th roots of unity. 

The following two problems ask you to obtain important information on 
Q~nr and Qp- Make sure you either solve them or check the answers in the 
back of the book. 

Problem 246 The p-adic absolute value and the p-adic valuation vp make sense, of 
course, on Q~nr. What is the image of vp? What is the residue field? 

Problem 241 The last problem also makes perfect sense if we replace Q~nr by an 
algebraic closure Qp of Qp. Do the answers change in that case? 
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The two main results of this section, describing the totally ramified and 
the unramified extensions of Qp, in fact yield a rather good description of 
arbitrary extensions. We won't go into it here in detail; basically, one shows 
that any extension is obtained by first taking an unramified extension, and 
then taking a totally ramified extension of the resulting field. This is proved 
in, for example, [Kob84]. The following problem is also a step in the direction 
of getting more precise descriptions: 

Problem 248 Let K/Qp be a totally ramified extension of degree e which satisfies 
the extra condition that p does not divide e (such extensions are called tamely ramified). 
Show that K can be obtained by adjoining to Qp a root of a polynomial of the form 
x e - pu, where U E Z; is a p-adic unit. 

Problem 249 Let K be a finite extension ofQp. Is there an analogue of the Eisenstein 
Criterion for polynomials with coefficients in K? If so, state it and prove it. 

5.5 Analysis 

Just as in the case of Qp, once we have a field with an absolute value we can 
do elementary analysis. In fact, all we need to point out is that all of what 
we did in Chapter 4 extends without any difficulty, because we were careful, 
when we proved our results, never to use anything that specifically requires 
that the field is Qp rather than an extension. The only changes we have to 
keep in mind are those that have to do with ramification: we might need to 
use a uniformizer 7r where we used p before, and we have a larger range of 
possible absolute values. 

In other words, we already know a lot of things, which we list: 

i) A sequence (an) in K is Cauchy if and only if 

ii) If a sequence (an) converges to a non-zero limit a, then we have lanl = 
lal for sufficiently large n. 

iii) A series L an in K converges if and only if its general term tends to 
zero. 

iv) Proposition 4.1.4 holds for double series in K. 

v) A power series f(X) = L anxn with coefficients an E K defines a 
continuous function on an open ball ofradius p = l/limsup v'lanl; the 
function extends to the closed ball of radius p if lanlpn ---; 0 as n ---; 00. 

vi) Proposition 4.3.2 and Theorem 4.3.3 are true for power series with 
coefficients in K. 
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vii) Functions defined by power series are differentiable, and their deriva
tives are defined by the formal derivative of the original series. 

viii) If f(X) = L anXn and g(X) = L bnxn are power series with coeffi
cients in K, Xm is a convergent sequence contained in the intersection 
of the disks of convergence of f and g, and we have f(xm ) = g(xm ) for 
all m, then an = bn for all n. 

ix) Strassman's Theorem holds without any change beyond replacing Qp 
by K and Zp by (')K. 

x) The corollaries to Strassman's Theorem therefore also extend. 

xi) The usual power series defines a p-adic logarithm function 

logp : B ---+ K, 

where 
B = {x E (')K : Ix -11 < I} = 1 + 1["(')K· 

This function satisfies the functional equation 

xii) The usual power series defines an exponential function 

expp : D ---+ K, 

where 
D = {x E (')K : Ixl < p-l/(p-l)}. 

This function satisfies the functional equation 

(Notice that when e is big there will certainly be elements in (')K whose 
absolute values are less than 1 but not less than p-l/(p-l), so that the 
restriction in the domain is more serious for finite extensions that it 
was for Qp itself.) 

xiii) If xED, then expp(x) E B and we have 

logp(expp(x» = x. 

xiv) If Ix - 11 < p-l/(p-l) (Le., x E 1 + D), then logp(x) E D and we have 

expp(logp(x» = x. 

xv) The p-adic logarithm gives a homomorphism from the multiplicative 
group B = 1 + 1["(') K to the additive group jJ K = 1["(') K. 
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xvi) The p-adic logarithm gives an isomorphism from the multiplicative 
group 1 + D to the additive group D, which is itself isomorphic to 
the additive group of OK. 

xvii) For each a E 7l,p, the binomial series (l+x)'" = B(a, x) converges when
ever Ixl < 1 (Le., for x E nOK = PK). (We need to keep the condition 
a E 7l,p because we used the fact that 7l, is dense in 7l,p to conclude that 
the binomial coefficients were p-adic integers. 7l, is certainly not dense 
in OK.) In other words, u'" is well defined whenever u E 1 + PK is a 
I-unit in OK and a E 7l,p is a p-adic integer. 

This pretty much transports all of the elementary analysis which we de
veloped in Chapter 4 to finite extensions of !Qp. In fact, we will later want 
to extend it to infinite extensions as well (which clearly won't be a problem, 
except for the possibility that infinite extensions are not complete ... ). We 
conclude this section with the obvious exercise: 

Problem 250 Satisfy yourself that the assertions we enumerated are all correct. 

5.6 Example: Adjoining a p-th Root of Unity 

The discussion in the previous sections was mostly theoretical. It may be 
helpful to apply it now to a concrete case. We consider, in this section, the 
field K = !Qp((), where ( is a p-th root of unity and p =J. 2. (The case p = 2 
is, clearly, a bit trivial.) In other words, ( satisfies (P = 1 but ( =J. 1, and is 
therefore a root of the polynomial 

XP-l 
<I> (X) = = Xp-l + Xp-2 + ... + X + 1 

p X-I ' 

which is known as the p-th cyclotomic polynomial. The first thing we need 
to do, then, is to check that this polynomial is irreducible. For that, we use 
the Eisenstein criterion: 

Lemma 5.6.1 The polynomial 

is irreducible over !Qp. 

PROOF: The polynomial <I>p(X) itself certainly does not satisfy the conditions 
for the Eisenstein criterion. So we use a little trick. 

Let F(X) = <I>p(X + 1). It is easy to see that <I>p(X) is irreducible if 
and only if F(X) is. We claim that F(X) does satisfy the conditions in the 
Eisenstein criterion. To see that, we need to check two things: that all the 
coefficients except the first are divisible by p, and that the last coefficient is 
not divisible by p2. 
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For the first, recall that, modulo p, taking p-th powers distributes over 
sums: 

(a + b)P == aP + bP (mod p). 

This allows us to compute: 

F(X) = 4>p(X + 1) 

(X + I)P -1 
(X+1)-1 

(X + I)P -1 
X 

XP + 1 - 1 = Xp-1 
X - (mod p), 

so that, except for the first, all the coefficients of F(X) are divisible by p, as 
we claimed. 

As for the last coefficient, it is equal to F(O) = 4>p(l) = p, which is 
certainly not divisible by p2. The Eisenstein criterion then says that F(X) 
is irreducible, which proves our assertion. 0 

In particular, we can deduce the following things: 

• K = Qlp(() is an extension of Qlp of degree p - 1 (since that is the degree 
of the minimal polynomial for (). 

• Looking at the minimal polynomial, we see that N K /lQp (() = 1, and there
fore that 1(1 = 1. (Another way to see this is to note that (belongs to ~K' 
and that so does (-1 = (p-1, which shows that ( must be a unit in ~K.) 

• The polynomial F(X) = 4>p(X + 1) is the minimal polynomial for (- 1. 
Therefore, we have NK/lQp(( -1) = p, and therefore 

I( - 11 = p-1/(p-l). 

• K is totally ramified, and 7r = ( - 1 is a uniformizer in K. 

• We have (== 1 (mod 7r); in other words, ( is a I-unit in ~K. 

• The fact that (is in ~K shows that any polynomial aO+a1( +- . . +ap_2(p-2, 
with ai E Zp, is in ~K (it's clearly unnecessary to consider polynomials 
in ( of higher degree, because ( is a root of 4>p(X)). In other words, 
Zp[(] C ~K. This inclusion is actually an equality-see below. 

Since K is totally ramified, we have e = p -1, f = 1, and the residue field 
~ K / 7r~ K of K is just lFp- As usual, we can choose the integers 0, 1, ... p - 1 
as coset representatives, and it follows that the elements of K can all be 
written as 7r-adic expansions of the form 
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where the ai are integers between 0 and p - 1. This is very nice, except for a 
slight problem: suppose we are given the p-adic expansion of an element of 
«Jlp; it is not immediately clear how to obtain its 7f-adic expansion in a simple 
way. For example, 

Problem 251 What is the 7f-adic expansion of the integer p? 

We said above that it is easy to see that Zp [(] C () K, and that in fact 
we have an equality. To see why, remember that in the proof of Proposi
tion 5.4.6 we showed that any element of ()K could be written as a Zp-linear 
combination of the elements 

01,02, ... , Of, 

7fa1, 7f02, ... , 7fOf, 
2 2 2 7f 01, 7f 02, ... , 7f Of, 

'" , 

where 01, ... , Of were a set of elements of ()K reducing to a basis of the 
residue field Ik: over Fpo In our case, however, f = 1, and Ik: is equal to Fp, so 
we need only one element in the basis: a1 = 1. The result then says that any 
element of () K is a Zp-linear combination of 1, 7f, 7f2, ... 7fP - 2 (since e = p -1 ) . 
Remembering that we have taken 7f = ( - 1 and substituting in, this says 
that any element of () K can be written as a polynomial in (, and hence that 
Zp[(] = ()K. 

To conclude this section, we will point out some interesting things about 
the field K. First of all, since we have 1«( -1) I < 1, the series for the logarithm 
of ( will converge. Since (P = 1, we must have plogp«() = logp(l) = 0, so 
that logp«() = O. Writing out the series, this says that 

which we can rearrange slightly into 

which is a rather remarkable formula. (We've met it before in the case p = 2.) 
Another interesting result is that there is a (p - 1 )-st root of -p in K. To 

see why one might want to look for such a thing, remember that vp (7fe ) = 1, 
so that 7fe differs from p by a unit in () K. One might argue that the "nicest" 
choice of 7f would be one where this unit were the simplest possible unit. 
What we are about to show is that there is a 7f1 E (') K for which 7fi = -p, so 
that the unit in this case is simply -1. That's pretty nice! 
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It's also rather tricky: begin by recalling that the norm of (1 - () is 
precisely p (look at the minimal polynomial for (-1, which we found above, 
and notice that since the degree of K is even, N K /lQlp(x) = N K /lQlp(-x).). 
The norm, remember, can be obtained as the product of the images of our 
element 1 - ( under the various automorphisms of Kover Qp- There are 
p - 1 such automorphisms, and they are given by 

for i = 1, 2, ... , p - 1. This means that the images of 1 - ( under the various 
(Ji are the 1 - (i, and the fact that the norm is p gives the equation 

(We could also get this equality by setting X = 1 in the p-th cyclotomic 
polynomial.) Now, we want to make (p - 1 )-st powers appear, so we do it by 
brute force, rewriting the equation as 

-1 1 - (2 1 _ (p-l 
(1 - ()P . -- . . . . . = p. 

1-( 1-( 

Notice that (1 - ()p-l has the same valuation as p, which suggests that the 
other factors are units (to be precise: it shows that the product of all the other 
factors is a unit, and this suggests that each of the other factors is a unit). 
To see that this is indeed the case, suppose we can show that the factors are 
all in (') K. Then their valuations would all be greater than or equal to zero. 
But the sum of their valuations is the valuation of the product, which is zero. 
Hence, each of the factors must have valuation zero. In other words, if we 
can show that all the factors are in (') K, then it will follow that they are all 
units. But the algebraic identity 

1 _ ;-i 
__ '" = 1 + ( + ... + (i-l 
1-( 

shows that the factors are indeed in (')K (since they are polynomials in (). 
Hence, each ofthe fractions (1 - (i) / (1 - () is a unit in (') K. 

There is one more thing we can get from the equation 

1 ;-i 
_-_"'_ = 1 + (+ ... + (i-I. 
1-( 

Since ( == 1 (mod 7r) (because, after all, 7r = (- 1. .. ), and since there are i 
summands on the right hand side, we get 

1 _ (i . 
-- == z (mod 7r). 
1-( 
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Multiplying all of these gives something congruent modulo 7r to the product 
of the integers from 2 to p - 1. In other words, we get 

1 - (2 1 _ (p-l 
1 _ ( ..... 1 _ ( == (p - I)! (mod 7r). 

Now remember that 
(p - I)! == -1 (mod p) 

(this is "Wilson's Theorem" in elementary number theory). Changing sign, 
and using the previous formula, we see that 

1 - (2 1 _ (p-l 
---- ... 

1-( 1-( 

is a I-unit, i.e., is congruent to 1 modulo 7r. This gives an equation of the 
form 

(1- ()p-l . (a I-unit) = -po 

What we are after, remember, is to show that -p has a (p - 1)-st root in 
K; from this equation, we will be done if we can show that we can always 
take a (p -1)-st root of a I-unit in (jK. But this follows easily from Hensel's 
Lemma: 

Problem 252 Let U E 1 + 7r(')K, so that u is a I-unit. Show, using Hensel's Lemma, 
that the polynom ia I X p - 1 - u has a root in (') K . 

The upshot: there exists an element 7rl E (jK such that 7rf-1 = -po This 
is interesting in itself, but it also gives an example of the situation described 
in Problem 248, since we have e = p-l prime to p, and of course K = IQp( 7rl), 

where 7rl is a root of X p - 1 + p. 

Problem 253 This was a long-drawn-out argument. Can you give a simpler proof 
that K contains a (p - l)-st root of -p? 

Problem 254 Even nicer than our 7rl would be a uniformizer 7r2 such that 7r~-1 = P 

(i.e., the unit is just 1). Show that K in general does not contain such a 7r2. Can it 
happen, for a specific prime, that such a 7r2 does exist? If so, give an example of a 
prime for which it does exist. 

This example shows how powerful an array of tools we have already put 
together to study IQp and its algebraic extensions. The combination of alge
braic and analytic techniques is very effective! 

One last bit of fun. Consider the problem of finding the roots of the 
equation logp(x) = 0 in K (of course, what this really means is that we want 
to look for roots x E 1 + 7r(j K, since otherwise logp is not defined). This 
amounts to looking for the zeros of the logarithm series 

( l)n+1 xn 
log(1 + X) = L -'------'---

n 
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in 'lrCJ K, and we can do this with Strassman's theorem by changing variables. 
Write 

( l)n+l'1rnxn 
f(X) = log(1 + 'lrX) = L -'------'-----

n 

Clearly f(x) converges when x E CJK, and then Strassman's theorem says 
that the number of roots of f (X) in CJ K (which is the number of roots of logp 
in 1 + 'lrCJ K) is bounded by the integer N defined by the two conditions 

I'lrN 1 l'lr
n 1 - -max-

N - n2:1 n 
and 

So we need to estimate the absolute value 

1:1 
as a function of n. Let's do it with valuations this time: clearly, vp('lrn) 
n/(p - 1); that's how we chose 'Ir to begin with. So 

V ('lrn) = _n _ _ v (n). 
p n p-1 p 

We need to find the n for which the absolute value is largest; in valuation 
terms, we want to find the n which makes the valuation smallest. To help us 
get our bearings, we can tabulate the first few values: see table 5.1 

The table suggests that the smallest value is l/(p -1), which occurs only 
when n = 1 and when n = p. This means N = p, so that logp has at most 
p roots in 1 + 'lrCJ K. Since we already know p roots, namely the roots of 
unity 1, (, (2, ... , (p-l, we already know all the roots. In particular, this 
tells us that the roots of unity contained in K are exactly the cyclic group 
of p(p -l)-st roots of unity (the p-th roots we just found, plus the (p - 1)-st 
roots that are provided by Hensel's Lemma when f = 1). 

Problem 255 Prove that our surmise from the table is correct, i.e., that the smallest 
value for vp('lrn /n) is 1/(p - 1), and that it occurs last when n = p. 

Problem 256 Investigate what would change if instead of adjoining a p-th root of 
unity we adjoin a pn-th root of unity for some n > 1. 

5.7 On to Cp 

We now want to go on to consider the algebraic closure Qp in earnest. We 
have already constructed its absolute value, and the next order of business is 
to show that it is not complete with respect to this absolute value. We will 
then go to its completion, of course, and we will be able to prove that the 
completion is algebraically closed. 
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vp(n) 
7rn 

n V (-) p n 

0 
n 

n=1, ... ,p-1 --
p-1 

1 
P 1 

n=p ---1=--
p-1 p-1 

n = p + 1, ... , 2p - 1 0 
n 

--
p-1 

n= 2p 1 
2p 2 

---1=1+--
p-1 p-1 

.. . .. . ... 

n =p2 2 
p2 1 

---2=p-1+--
p-1 p-1 

Table 5.1: Computing vp (7rn In) 

To do all that, we need to know a little more about its elements, and we 
begin by proving a few useful facts. The first of these is known as "Krasner's 
Lemma." The first thing we need in order to be able to state it is to remind 
ourselves of what it means for two elements of Qp to be "conjugate." This 
is a concept that really comes from Galois theory, but we state it here in a 
minimalistic fashion. 

Definition 5.7.1 Let K be a subfield of Qp. Two elements a and a' of Qp 
are called conjugate over K when they are roots of the same monic irreducible 
polynomial with coefficients in K. 

As we have pointed out above, an equivalent way of saying this is to 
say that two elements are conjugate when there exists an automorphism 
a : Qp ----t Qp which induces the identity map on K and sends a to a'. It 
is clear, from either characterization, that conjugate elements have the same 
absolute value. (Yes? Good.) 

It is worth pointing out that this definition has nothing "p-adic" about it: 
it works just as well for an arbitrary field K of characteristic zero, provided 
we replace Qp by an algebraic closure of K. 

What Krasner's lemma says is that if an element b is "close enough" to a 
(what this means is defined by the statement of the Lemma, in terms of the 
conjugates of a), then a belongs to the field generated by b. Perhaps we can 
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use the description "b is more complicated than a" to mean that adjoining b 
gives a field which contains the field generated by a. In that language, the 
Lemma says that b can only be "very close" to a if it is more complicated 
than a. 

This is a somewhat surprising conclusion, since to say that the field gen
erated by a is contained in the field generated by b amounts to saying that 
a can be written as a polynomial in b. Viewed at from this angle, Krasner's 
Lemma looks like the prototypical p-adic theorem: it deduces an algebraic 
fact (a can be written as a polynomial in b) from an analytic fact (b is very 
close to a). 

Here is the precise statement, where we have taken care to be very general 
in order to be able to use the Theorem at a crucial juncture below. The reader 
should feel free to replace "K" by "(lV' everywhere in this and the following 
result if the added generality proves to be a hindrance. 

Theorem 5.7.2 (Krasner's Lemma) Let K be a non-archimedean com
plete valued field of characteristic zero, and let a and b be elements of the 
algebraic closure of K. Let al = a, a2, ... , an be the conjugates of a over K. 
Suppose that b is closer to a than any of the conjugates of a, i.e., 

Ib - al < la - ail 

for i = 2,3, ... , n. Then K(a) c K(b). 

PROOF: This is short and sweet, but uses field theory a bit more seriously 
than other results we have proved. Let L = K(b) and suppose the theorem 
is false, that is, that a ~ L. Well, then look at L(a) (which, remember, is 
the smallest extension of L which contains a). Since we are assuming that 
a ~ L, the degree m = [L(a) : L] is bigger than one. Now, there must be 
m homomorphisms (J : L(a) ---4 K which send L to itself (and a to one of 
its conjugates, of course). There is at least one such (J for which da) i=- a 
(because if (J(a) = a then (J is the identity on L(a), and we're assuming that 
there's at least one other (J besides the identity); call it (Jo. Since we know, 
by the uniqueness of the extension of an absolute value, that Idx)1 = Ixl for 
any (J and any x E K, we have 

l(Jo(b) - (Jo(a)1 = Ib - al· 

But (Jo fixes L, and b is in L, so (Jo(b) = b, and the last equality now says 

Ib - (Jo(a) I = Ib - al· 

But then 

la - (Jo(a) I ~ max{la - bl, Ib - (Jo(a)l} = max{la - bl, Ib - al} = Ib - ai, 

and that's not allowed, since our assumption was that b was closer to a than 
any of its conjugates, one of which is (Jo(a). The contradiction shows that 
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our assumption was wrong, that is, that a does belong to L, and that shows 
that K(a) c K(b). 0 

Problem 257 Use Krasner's Lemma to give another proof that the field Qp((p) ob
tained by adjoining a p-th root of unity contains a (p - l)-st root of -po 

A really important corollary of Krasner's Lemma is the following: 

Corollary 5.7.3 Let K be a non-archimedean complete valued field of char
acteristic ze'rO. Let 

be a monic irreducible polynomial of degree n with coefficients in K, let A be 
a 'rOot of f(X), and let L = K(A) be the extension of K obtained by adjoining 
that 'rOot. Then there exists a real number c; > 0 such that the following holds: 

• if g(X) = xn + bn_ 1xn-l + ... + b1X + bo is any monic polynomial of 
degree n for which we have 

foralli=O,l, ... ,n-l, 

then g(X) is irreducible over K and has a 'rOot in L. 

That's a bit complicated, so let's paraphrase: what the corollary says is 
that any polynomial which is close enough to our f(X) shares the two main 
properties of f(X): it is irreducible, and it has a root in L. How close is 
"close enough" may depend on the specific f(X), of course. 
PROOF: The proof (which is based on the one given in [Ami75]) has two 
parts. First, we establish that under certain conditions the conclusion holds, 
and then we show that we can choose c; so that the conditions must hold. 

Let Al = A, A2, ... ,An be the roots of f(X) in K, and let 

Let g(X) be as in the statement: a monic irreducible polynomial of degree n. 
Let J.Ll, J.L2,···, J.Ln be the roots (listed with multiplicities, of course) of g(X) 
in K, so that g(X) = I1(X - J.Lj). Let 

D = IIg(Ai) = II(Ai - J.Lj). 
i i,j 

Claim 1: If IDI < rn2, then g(X) is irreducible over K and has a 'rOot in 
L = K(A). 

P'rOof of claim 1: If IDI < rn2, then at least one of the n 2 factors of D must 
have absolute value less than r. In other words, there must be a pair (i, j) 
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such that IAi - J.Ljl < r. Since r is the minimum distance between Ai and its 
conjugates, we can apply Krasner's Lemma to conclude that K(Ai) C K(J.Lj); 
but this says that K (J.Lj) must have degree at least n over K, and since J.Lj 
is a root of a polynomial of degree n, the only way this can happen is when 
the polynomial is irreducible and the degree is exactly n. Since both fields 
are then of degree n, and one is contained in the other, they must in fact be 
equal. 

Thus, we have shown that g(X) is irreducible, and that K(Ai) = K(J.Lj). 
If i = 1, this is what we wanted to prove. If not, there is a little step 
more: there is certainly an automorphism of K that sends Ai to A, and this 
automorphism must send J.Lj to some other root J.L = J.Ljl of g(X). Applying 
the automorphism to the equality K(Ai) = K(J.Lj) gives L = K(A) = K(J.L), 
so that g(X) has a root J.L that belongs to L, which is what we wanted to 
prove. 

Claim 2: There exists a real number c > 0 such that if lai - bil < c, then 
IDI < rn2

• 

Proof of claim 2: We leave this one to the reader. It is a matter of 
expressing how D depends on the coefficients of the polynomials involved. 0 

ProbleIn 258 Prove "Claim 2." Suggestion: try to show that the function that maps 

is a continuous function. Why does this do the trick? 

ProbleIn 259 (For those confident of their abstract algebra) In the last two results 
we imposed a litany of conditions on our field: "non-archimedean complete valued field 
of characteristic zero." Which of these conditions are seriously needed? Are there 
weaker forms of these results which are valid in more generality? 

One way of grasping what the corollary says is to think of it as saying that 
at least some aspect of the "root structure" of a polynomial varies "continu
ously" as a function of the coefficients of the polynomial. Specifically, it says 
(or, to be precise, its proof shows) that when two irreducible polynomials are 
"close enough" (in the sense that the coefficients are close) there will be a 
root of one "close" to any root of the other. The next problem gives a result 
in the same spirit. 

ProbleIn 260 The point of this problem is to state (and have the reader prove) a 
version of the statement that "the roots of a polynomial are continuous functions of the 
coefficients." For this, let f(X) = L aiXi be a polynomial of degree n whose roots 
in (Qp are all distinct. Show that given an c > 0 there exists a 5 > 0 such that for any 
other polynomial g(X) = L biXi of degree n such that lai - bil < 0 for i = 0, 1, ... ,n 
and every root A of f(X) there exists exactly one root p, of g(X) satisfying Ip,- AI < c. 
(Uff! That's quite a mouthful!) 
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Problem 261 Is the hypothesis (in both the corollary and the previous problem) that 
the polynomials have the same degree really necessary? 

Problem 262 Is the "continuity of the roots as functions of the coefficients" true for 
polynomials with real and/or complex coefficients? 

We now proceed to the big result in this section. 

Theorem 5.7.4 The algebraic closure Qp is not complete with respect to the 
(extended) p-adic absolute value. 

PROOF: (This is a long one.) 
Proving the theorem is going to require us to come up with a Cauchy 

sequence in Qp which does not converge. Since finite extensions of Qp are 
complete, this sequence must involve numbers from bigger and bigger ex
tensions as it proceeds (because otherwise we could find a finite extension 
containing all the terms of the sequence, and it would have to converge). So 
this is going to be a complicated sequence! 

In fact, it is going to be an infinite series whose general term tends to 
zero, but which does not converge. That is good enough, of course, since 
we've already shown that the partial sums of such a series form a Cauchy 
sequence. We'll construct our example slowly and carefully, so that no one 
gets lost on the way. Each term in our series will belong to an unramified 
extension of Qp, so that our example will in fact show that the union Q~nr 
of all the unramified extensions of Qp is already not a complete field. 

Enough preliminaries: here goes (following [Cas86]). Remember that one 
gets unramified extensions of Qp by adjoining roots of unity of order prime 
to p. We begin by putting together a large list of these. We choose (1 = 1, 
and then choose a sequence of (i, i = 2, 3, ... such that: 

• each (i is a root of unity of order prime to p, 

• for each i, (i-l E Qp((i), and 

• the degree of Qp((i) over Qp((i-!) is bigger than i. 

In symbols, we have 

for some mi not divisible by p, 

Problem 263 But is it possible? Find a sequence of mi such that the primitive mi-th 
roots of unity form a sequence satisfying our two conditions. 
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Now construct the series 

The partial sums of this series, 

00 

n 

Cn = I: (ipi, 
i=O 

clearly form a Cauchy sequence in IQp (and in fact even in lQ~nr). We want 
to prove that this sequence does not have a limit in IQp. 

Well, suppose it did, and call the limit C E IQp. Whatever it is, C must 
be a root of some irreducible polynomial over IQp, since it is an element 
of the algebraic closure. Say that this polynomial has degree d, so that 
[lQp(c) : IQp] = d. Then consider the d-th partial sum: 

Since 

d 

Cd = I: (ipi. 
i=O 

00 

C - Cd = I: (i pi 
i=d+1 

and the ('s are units, we have 

Now take any automorphism U : IQp -----> IQp inducing the identity on IQp. 
Any such U preserves absolute values, so we must have 

We are aiming for a contradiction, of course, and the first step to get there 
is to choose a nice bunch of u's. Remember that we chose our ('s so that 
[lQp((i) : IQp((i-1)] > i. Applying this to i = d, we see that there are (at 
least) d + 1 automorphisms U1, U2, ... , Ud+1 which are the identity mapping 
on IQp((d-1) (and hence fix (1, (2, ... , (d-1) but such that the images of (d 
are all distinct. 

Now if i -=F j we get 

(
d-1 ) (d-1 ) 

Ui(Cd) - Uj(Cd) = 8 (ipi + Ui((d)pd - 8 (ipi + Uj((d)pd 

= (Ui((d) - Uj((d))pd. 

Notice that Ui((d) and Uj((d) are distinct md-th roots of unity; we saw above 
that they cannot be congruent modulo p. This means that the element 
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O"i((d) - O"j((d) is not divisible by p, which lets us compute the absolute 
value: 

!O"i(Cd) - O"j(Cd)! = p-d. 

We're almost there: now we apply the O"'s to c, and put together all the 
information we have gathered. We have 

and 

!O"i(Cd) - O"i(C)! :::; p-(d+1), 

!O"j(Cd) - O"j(c)! :::; p-(d+1), 

Together, these show that 

(use "all triangles are isosceles" twice). In particular, it follows that 0" i (c) =1= 

O"j(c). 
In other words, we have found d + 1 automorphisms 0"1, 0"2, ... , O"d+1 of 

IQp which are the identity on IQp and such that the images of C under the O"j 
are all distinct. But then the minimal polynomial for C must have at least 
d + 1 roots (the various images), which is a contradiction, since, after all, it 
had degree d. 

The contradiction shows that in fact C cannot be the root of a polynomial 
with coefficients in IQp, hence does not belong to IQp. This proves what 
we wanted: the algebraic closure of IQp is not complete with respect to the 
(extended) p-adic absolute value. 0 

In fact, since all the (i were roots of unity of order prime to p, we have 
also proved: 

Theorem 5.7.5 The maximal unramified extension lQ;nr oflQp, obtained by 
adjoining all the roots of unity of order prime to p, is not complete with 
respect to the (extended) p-adic absolute value. 

Notice that our proof has in fact constructed an explicit element that is 
transcendental over 1Qp- One can, in fact, use the basic idea of the proof 
to obtain general method for showing that the sums of certain series are 
transcendent. 

Problem 264 Explain the statement: "the expression of en as a series is actually 
its p-adic expansion." Does this observation make the proof/construction easier to 
understand? 

Well, "c'est la vie." Since IQp is not complete, we need to construct a 
completion. This is done exactly as in the case of IQp, by playing with the 
ring of all Cauchy sequences in 1Qp- (In fact, our construction in Chapter 3 
clearly works in utter generality.) The upshot is the following: 
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Proposition 5.7.6 There exists a field Cp and an absolute value I I on Cp 

such that: 

• Cp contains Qp, and the restriction of I I to Qp coincides with the p-adic 
absolute value; 

• Cp is complete with respect to I I; and 

• Qp is dense in Cp. 

Recall that whenever we have a convergent sequence Xn ---+ x 1= ° in a 
non-archimedean field, there exists an N such that Ixnl = Ixl for n ~ N 
(this is Lemma 3.2.10, except that we are saying that it works for any non
archimedean field ... which it clearly does). This means that the set of possible 
absolute values in Cp is exactly the same as in Qp- In other words, 

Proposition 5.7.7 If x E Cp, x 1= 0, then there exists a rational number 
v E Q such that Ixl = p-v. In other words, the p-adic valuation vp extends 
to Cp, and the image of C; under vp is Q. 

Problem 265 Convince yourself that the last two Propositions are true. (In both 
cases, it is just a matter of seeing that arguments we presented before in the case of 
Qip extend without any difficulty.) 

Problem 266 Since we have a valuation, we have a valuation ring, its valuation ideal, 
etc. Give explicit definitions. Can you describe the residue field? Is the valuation ideal 
principal? Does the concept of a uniformizer still make sense? 

We write D for the valuation ring of Cp , i.e., 

D = {x E Cp : Ixl ~ I}. 

This contains the valuation ideal 

\lJ = {x E Cp : Ixl < I}. 

As always, D is a local ring. 

Problem 267 Show that any element of ICp can be written as a product of (i) a root 
of unity, (ii) a I-unit, and (iii) a fractional power of p. 

Cp is an enormous field, gotten by a series of complicated operations: 
start with Q and the p-adic absolute value, take a completion, take the alge
braic closure of the result, and then complete once again! One might wonder 
whether the process will ever stop, i.e., whether one might not need to take 
another algebraic closure, and so proceed without ever ending. On the con
trary: 

Proposition 5.7.8 Cp is algebraically closed. 
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PROOF: We give a jazzy proof, and ask the reader to come up with a more 
direct proof in a problem. 

Take an irreducible polynomial f(X) with coefficients in Cpo Since Qp is 
dense in Cp , we can find polynomials of the same degree and with coefficients 
in Qp whose coefficients are as close as we like to the coefficients of f(X). By 
Proposition 5.7.3, if we choose such an fo(X) with coefficients close enough 
to those of f(X), it will be irreducible over Cp , and a fortiori also irreducible 
over Qp. Since Qp is algebraically closed, this means that fo(X) will have 
degree one. Since f(X) and fo(X) have the same degree, it follows that f(X) 
has degree one. 

This shows that any irreducible polynomial in Cp must be of degree one, 
which means that Cp is algebraically closed. D 

Problem 268 Here's an idea for a more direct proof (which might be technically 
more difficult). Take any polynomial f(X) E Cp[X]; we can assume it has no repeated 
roots (do you see why?). Build a sequence of polynomials fi(X) E Qp[XJ, all of the 
same degree, whose coefficients approach those of f(X). Show, using Problem 260, 
that one can choose a root of each of the fi(X) so as to form a Cauchy sequence in 
Qp which converges to a root of f(X) in Cpo 

Problem 269 (Hard) Show that Cp is not locally compact. 

In fact, one can show that any locally compact (and therefore complete) 
field of characteristic zero must be isomorphic to either JR, C, or a finite exten
sion of Qp- One can even12 start the whole thing from here, i.e., start with 
a locally compact field of characteristic zero, and reconstruct the absolute 
value from the Haar measure on that field. 

The real home of p-adic analysis is Cp , which except for not being locally 
compact, is closely analogous to the field of complex numbers. The next 
chapter will take a look at some aspects of analysis in Cp , without trying to 
be in any way exhaustive. 

12Mumbo-jumbo alert: this sentence talks about high-powered stuff which we really 
don't think our readers know about. 
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This chapter tries to give the reader a taste of what analysis in <Cp is like. 
Rather than attempt to be exhaustive, which would violate the goals of this 
book, we try to touch on a few remarkable points: the theory of Newton 
polygons, the p-adic Weierstrass Preparation Theorem, the description of 
entire functions. As usual, the first step is to re-appropriate all the results 
we obtained earlier. We then go on to consider how to extend the p-adic 
valuation to polynomials and power series. This will yield a norm on the 
spaces of polynomials and of power series, which will prove to be an important 
tool. We then go on to proving the main theorems themselves. 

Before we start, recall the notation we introduced above: we write 

for the valuation ring in <Cp (we might want to call it the ring of integers in 
<Cp ) and 

I1J = {x E <Cp : Ixl < I} 

for the valuation ideal. The ideal I1J is not principal, and the residue field 
II!' = D /11J is an algebraic closure of II!'p-

6.1 Almost Everything Extends 

As we have already pointed out, most of the results in Chapter 4 did not 
really depend on the fact that we were working over Qp; in fact, they hold 
just as well for more general fields. In particular, we can repeat (and enlarge) 
our list of "things that extend:" 

i) A sequence (an) in <Cp is Cauchy if and only if 

lim lan+l - ani = O. 
n-->oo 

ii) If a sequence (an) converges to a non-zero limit a, then we have lanl = 

lal for sufficiently large n. 

iii) A series L an in <Cp converges if and only if its general term tends to 
zero. 

iv) Proposition 4.1.4 holds for double series in <Cp • 
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v) A power series f (X) = L anxn with coefficients an E Cp defines a 

continuous function on an open ball of radius p = l/limsup \llanl; 
the function extends to the closed ball of radius p if lanlpn ----+ 0 as 
n ----+ 00. Note that in contrast to what happens in Qp or even in 
its finite extensions, we can characterize p by saying that L anxn 

converges for Ixl < p and diverges for Ixl > p. 

vi) Therefore, given a power series f(X) = L anxn with radius of con
vergence p, we can define a function on the open (and perhaps also the 
closed) ball of radius p around a E Cp by putting 

f(x) = L an(x - a)n 

for any x E B(a, p) (or B(a, p)). 

vii) Proposition 4.3.2 and Theorem 4.3.3 are true for power series with 
coefficients in Cp . 

viii) Functions defined by power series are differentiable, and their deriva
tives are defined by the formal derivative of the original series. 

ix) If f (X) = L anxn and 9 (X) = L bnxn are power series with coeffi
cients in Cp , Xm is a convergent sequence contained in the intersection 
of the disks of convergence of f and g, and f(xm ) = g(xm ) for all m, 
then an = bn for all n. 

x) Strassman's Theorem holds without any change beyond replacing Qp 
with Cp and Zp with D. 

xi) The corollaries to Strassman's Theorem therefore also extend. 

xii) The usual power series defines a p-adic logarithm function 

logp : B ---> Cp, 

where 
B = {x ED: Ix - 11 < I} = B(I, 1) = 1 + \p. 

This function satisfies the functional equation 

for any x, Y E B. 

xiii) The usual power series defines an exponential function expp : D ---> Cp , 

where 
D = {x ED: Ixl < p-l/(p-l)} = B(O,p-l/(p-l)). 

This function satisfies the functional equation 

for any x, y E D. 
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xiv) If XED, then I expp(x) - 11 < p-l/(p-l); in particular, expp(x) E B, 
and we have 

xv) If Ix - 11 < p-l/(p-l) (Le., x E 1 + D), then logp(x) ED, and we have 

expp(logp(x)) = x. 

xvi) The p-adic logarithm gives a homomorphism from the multiplicative 
group B = B(I, 1) = 1 + '+I into the additive group '+I = B(O, 1). 

xvii) The p-adic logarithm gives an isomorphism from the multiplicative 
group 

1 + D = B(I,p-l/(p-l)) 

to the additive group 

D = B(O,p-l/(p-l)). 

xviii) For each O! E /lp, the binomial series (1 + x)'" = B( O!, x) converges 
whenever Ixl < 1 (Le., for x E '+I = B(O, 1)). In other words, u'" is well 
defined whenever u E B(I, 1) = 1 + '+I is a I-unit in D and O! E Zp is a 
p-adic integer. 

Problem 270 Make sure you understand how to prove the claims above. Pay partic
ular attention to where the situation in <Cp differs from the ones we considered before. 
For example, why is the statement characterizing p in item (v) true? 

Problem 271 In assertion xiv, is it true that the additive group of D is isomorphic 
to the additive group of D? (The analogous statement was true in <Qp ... ) 

Another important class of results that can be extended to Cp are the 
several variants of Hensel's Lemma. The trick here is not to use versions which 
refer to uniformizers, since there are no uniformizers in Cpo (A uniformizer 
would be an element with the largest possible absolute value which was still 
less than one, but in Cp we have elements with absolute value pr for any 
r E Q, so there is no such thing.) Still, one can either replace "mod p" with 
"mod '+I" throughout, or simply state things in terms of absolute values. So 
here are two versions of Hensel's Lemma: 

Theorem 6.1.1 (Hensel's Lemma in Cp ) Let 

F(X) = ao + a1X + a2X2 + ... + anXn 

be a polynomial whose coefficients are in D. Suppose that there exists an 
O!l E D such that 

and 
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where F'(X) is the (formal) derivative of F(X). Then there exists an a E D 
such that la - all < 1 and F(a) = O. 

PROOF: We need to be just a little bit careful in order to avoid trouble. (The 
problem is that there is no uniformizer in Cp , and all our proofs up to here 
depended explicitly on their being one. What we do is to use a convenient 
element of small valuation to replace the uniformizer.) Let 8 = IF(al)1 < 1, 
and choose 7r E Cp such that 17r1 = 8. Then the argument in the original 
proof of Hensel's Lemma (Theorem 3.4.1), with p replaced everywhere by 7r, 

will allow us to find a2 such that lal -a21 :-:; 8 and IF(a2)1 :-:; 82. Proceeding 
inductively, we get a sequence an which converges to the root a. 0 

Problem 272 Check the details! 

And now the other version, for polynomials: as before, one can state this 
with absolute values or by talking of reduction modulo the ideal 1.l3. We 
choose the second path here, simply so that we don't have to talk about "the 
maximum of the absolute values of the differences of the coefficients" of two 
polynomials. 

Theorem 6.1.2 (Hensel's Lemma, Second Form, for Cp ) Let f(X) E 

D [X] be a polynomial with coefficients in D, and assume that there exist 
polynomials gl(X) and hl(X) in D[X] such that 

i) gl(X) is monic 

ii) gl(X) and h1(X) are relatively prime modulo 1.l3, and 

iii) f(X) == gl(X)h1(X) (mod 1.l3) (understood coefficient-by-coefficient). 

Then there exist polynomials g(X), h(X) E D[X] such that 

i) g(X) is monic, 

ii) g(X) == gl(X) (mod 1.l3) and h(X) == h1(X) (mod 1.l3), and 

iii) f(X) = g(X)h(X). 

Problem 273 Give a proof ofthe second form of Hensel's Lemma. The same caution 
we used for the first version will be necessary, and the relevant 8 will be the maximum 
of the absolute values of the differences between coefficients of f(X) and coefficients 
of gl (X) hI (X). 

Problem 274 In the statement of the second form of Hensel's Lemma, we make the 
assumption that "gl (X) and hI (X) are relatively prime modulo \13." Show, using the 
fact that the residue field IF = D /\13 is algebraically closed, that this can be replaced 
by "gl (X) and hI (X) have no common roots in IF.'' 

Problem 275 In this version of Hensel's Lemma, can we conclude that degg(X) = 
deggl(X)? 
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6.2 Deeper Results on Polynomials and Power Series 

The main goal of this section is to prove a theorem that has become known 
as the "p-adic Weierstrass Preparation Theorem." This is, of course, a p
adic version of a classical theorem due to Weierstrass which dealt with power 
series in several variables and is an important tool in the theory of functions 
of several complex variables. One can find the statement in many texts; for 
example, see [Vit89 , p. 22]. There are also versions of the theorem which 
apply to formal power series in several variables; these versions are useful 
in algebraic geometry. For this version, see, for example, [ZS75, Vol. 2, 
VILl, Thm. 5]. The p-adic version gives fundamental information on p-adic 
functions defined by power series. Our account of this theorem follows the 
one in [Cas86]. 

We will approach power series by way of polynomials. In other words, we 
will want to think of a power series as a limit of polynomials, and our results 
will be proved first for polynomials, then for power series. 

While we will constantly keep Cp in mind, the results we will obtain 
are true, interesting, and useful when we work over other fields, too. In 
fact, since some ofthem describe how polynomials factor, they are especially 
interesting when the field is not algebraically closed. On the other hand, 
we will often want to interpret what the theorems say in terms of the roots 
of the polynomials, in which case it's most convenient to place ourselves in 
Cpo So we'll switch back and forth between these two situations. Just to fix 
notation, let's let K be some extension of Qp which is complete; in practice, 
we will always be working either with a finite extension of Qp or with Cpo 
Let's write (') for the valuation ring (') = {x E K: Ixl ~ I}, P for its maximal 
ideal, and IF for the residue field. It might be good to remind ourselves that 
IF is a finite field if K is a finite extension of Qp and that it is the algebraic 
closure of IFp when K = Cpo 

The first step is to define absolute values (or norms) in the spaces we are 
interested in studying. Let's look first at polynomials. The most obvious 
way to define a norm on the space of polynomials is to simply look at the 
coefficients. This works, but we actually want to do something a little more 
subtle. 

Suppose we are interested in understanding how the values of a polynomial 

f(X) = ao + alX + a2X2 + ... + anXn 

vary when we plug in numbers belonging to the closed ball of radius e around 
the origin. Then, if x E B(O, e), we have Ixl ~ e, and 

If(x)1 = lao + alX + a2x2 + ... + anxnl 

~ max{laol, lalxl, la2x21,···, lanxnl} 

~ max{laol, lalle, la2Ie2, ... , Ian len} 

~ maxlail ei 
• 
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If c = 1, this last number is just the "obvious" measure of the size of f(X): 
the absolute value of the largest coefficient. For other values of c, it turns 
out that we may still use this number as a good measure of the size of f(X). 

Theorem 6.2.1 Let c > 0 be an arbitrary positive real number. Define a 
function II lie: K[X] ----> lR+ as follows: for each polynomial 

f(X) = ao + a1X + a2X2 + ... + anXn, 

set 
IIf(X)lle = maxlail ci . , 

Then we have 

i) Ilf(X)lle = 0 if and only if f(X) is identically zero. 

ii) Ilf(X) + g(X)lle :::; max{llf(X)lle, Ilg(X)IIc}· 

iii) Ilf(X)g(X)lIe = Ilf(X)llellg(X)lIe. 

iv) If f(X) = ao is a polynomial of degree zero, then Ilf(X)lle = laol. In 
other words, II lie induces the p-adic absolute value on the constants. 

v) If Ixl :::; c, then If(x)1 :::; Ilf(X)lle. 

In particular, II lie defines a non-archimedean absolute value on the field of 
rational functions K(X). 

PROOF: A lot of this is easy, and can be safely left to the reader. In fact, the 
first and second statements follow at once from the properties of the p-adic 
absolute value, and the last two follow at once from the definition of II lie. 
The statement about multiplicativity is the hard one. 

Let f(X) and g(X) be two polynomials. Write 

f(X) = ao + a1X + a2X2 + ... + anXn 

g(X) = bo + b1X + b2X 2 + ... + bnXn 

where of course we may very well have some zero coefficients (nobody said 
f(X) and g(X) had the same degree). Then each coefficient of the product 
f(X)g(X) looks like a sum 

L aibj, 
i+j=k 

and we can estimate the absolute value by 
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which is certainly less than or equal to 

This shows that 

Ilf(X)g(X)llc:::; IIf(X)llcllg(X)llc· 

Proving the reverse inequality is much trickier. (Part ofthe reason is that 
the estimate above could afford to be really "sloppy," since we were looking 
only for an upper bound. To get the converse, we must be careful about 
exactly what gets multiplied with what.) Here is a proof. 

Let's begin by giving names to things. Choose I so that 

and 

In other words, I is chosen to be the smallest exponent for which lailci 
achieves its maximum. Similarly, choose J so that IbJlcJ achieves the maxi
mum: 

and Ibjld < Ilg(X)llc for j < J. 

(These are clearly the coefficients to keep track of!) 
Now look at the coefficient of XI+J in the product f(X)g(X). It is given 

by the horrible formula 

2: aibj. 
i+j=I+J 

We want to estimate each term of this sum. There are three cases to consider: 

Suppose i < I. In this case, we know that 

and 

Putting these two together gives 

(Remember that i + j = 1+ J in our sum!) 
Suppose j < J. This is similar to the previous case; just switch the roles 

of i and j to get 

Finally, if i = I and j = J, we get lallel = Ilf(X)llc and IbJlcJ 
Ilg(X) Ilc, so we get an equality: 
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This means that in the sum 

L aibj 
i+j=I+J 

there is one largest term: the one with i = I and j = J. Since we are in 
a non-archimedean field, the absolute value of the sum will be equal to the 
absolute value of the largest term. In other words, 

L aibj = c-I-Jllf(X)llellg(X)lle 
i+j=I+J 

which we can rewrite as 

L aibj cI+J = Ilf(X)llellg(X)lle. 
i+j=I+J 

Now, to compute Ilf(X)g(X)lle, one has to take the maximum over all 
coefficients of the product; this last inequality says that the I +J-th coefficient 
already gives something equal to II!(X)llellg(X)lle. The maximum can only 
be bigger. In other words, we have proved 

Ilf(X)g(X)lle ~ Ilf(X)llellg(X)lle. 

Putting this together with the opposite inequality (proved just above), we 
get what we claimed: 

Ilf(X)g(X)lle = Ilf(X)llellg(X)lle. 

As promised, the other statements are left to the reader. o 

Problem 276 Prove the remaining statements in the theorem. 

Problem 277 Suppose we have two different complete fields Kl C K 2 . A polynomial 
f(X) E KdXl also belongs to K 2 [Xl. Show that the value of IIf(X)llc does not 
depend of which ring we put it in. In other words, we have really defined a norm on 
Cp[XJ, and its restriction to K[Xl gives the norm for polynomials in K[Xl. 

Problem 278 We can interpret polynomials as Cp-valued functions on K (and also 
on any extension of K, and even on Cp ), and in particular as functions on the closed 
ball B(O, c) C K. This means we can define a norm on the space of polynomials using 
the "sup norm" from classical analysis: 

IIf(X)11 = sup If(x)l· 
IxlSc 
xEK 

Show that we have Ilf(X)11 ::::: Ilf(X)11c- Does the equality hold? (Hint: the answer is 
easier to get if K = Cp .) 



6.2 Deeper Results on Polynomials and Power Series 195 

Problem 279 Now that we have norms on the space of polynomials, it is not difficult 
to restate the second form of Hensel's Lemma (Theorem 6.1.2) in terms of the II lit 
norm. Do so. Does a version using the II lie norm with c of- 1 work? 

The existence of the absolute values II lie on the ring of polynomials is 
a useful tool; for example, it can be used to give simpler proofs of some of 
the results in the previous chapter (such as Lemma 5.3.7 and the Eisenstein 
Irreducibility Criterion, Theorem 5.3.11). Some examples will also appear 
below. 

Problem 280 Suppose c is a real number of the form pT with r E Q, and let a 
be an element of Cp such that lal = c. (Why does one exist?) Show that the map 
¢ : Cp[X] ------7 Cp[X] defined by X f-+ aX satisfies the condition 

IIf(X)lIe = 1I¢(J(X»1I1. 

Notice that ¢ is clearly a ring isomorphism. What does this tell us about the relation 
between II lit and the various II lie? 

Problem 281 How would one have to restate the previous problem in order to get 
something that is true over some finite extension of Qp? 

Problem 282 Can one do anything like the previous problems in the case where c is 
not of the form pT with r E Q? 

Lemma 6.2.2 Let II II = II lie for some c > 0, and let f(X) E K[X] be any 
polynomial. Let 

be a polynomial of degree N with coefficients in K satisfying the condition 

(In other words, the maximum of the Ibnlcn is realized at the very last co
efficient.) Let q(X) and reX) be the quotient and the remainder which we 
obtain when we divide f(X) by g(X), so that 

f(X) = g(X) q(X) + reX) and degr(X) < N. 

Then we have both 

Ilf(X)11 ~ Ilq(X)llllg(X)11 and Ilf(X)11 ~ Ilr(X)II· 

PROOF: Rather than plod through a million inequalities (which is elementary 
but difficult), here is an attempt at a conceptual proof. See [Cas86] for a more 
direct method. What we will do is handle the case c = 1 first, then move on 
to the general case by means of the ideas in the last three problems. 
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1. If c=l, then we have IbNI = max Ibil. Multiplying g(X) by some 
element in K if necessary, we may assume that IbNI = 1. Again, we can 
multiply the whole equation f(X) = q(X) g(X) + r(X) by some element in 
K in order to get max{llq(X)II, Ilr(X)II} = 1, which implies Ilf(X)11 :s:; 1. 
What the theorem says after both reductions is that in fact Ilf(X)11 = 1. 

Well, suppose not. Then every coefficient of f(X) has absolute value less 
than 1, which means that they belong to the valuation ideal p. If we use bars 
to denote reduction modulo p, we get an equation 

0= f(X) = g(X) q(X) + r(X). 

But now, since IbNI = 1 (and here is where we seriously use the assumption 
about g(X)), 

degg(X) = N > degr(X) ::::: degr(X); 

this forces q(X) = 0, which then implies r(X) = 0, which contradicts the 
assumption that max{llq(X)II, Ilg(X)II} = 1. This proves the lemma when 
c = 1. 

Before we go on, notice that the polynomials q(X) and r(X) necessarily 
have coefficients in K. Their norms, however, do not depend on the field, as 
we pointed out above (Problem 277). Since our theorem is about the norms, 
we might as well assume K = Cp , and we will. 

2. If c -I- 1, but c is of the form pr for r E Q, choose an element 
a E Cp with lal = c. Then consider the polynomials h(X) = f(aX) and 
gl(X) = g(aX). It's easy to see that IIh(X)lll = IIf(X)lle, and similarly for 
the g's. Applying part 1 to h(X) and gl(X) then gives the inequality we 
want for the c-norms. 

3. If c is not of the form pr for r E Q, then we have to resort to black 
magic. Since the numbers of the form pr are dense in IR (can you see why?), 
there is a sequence Ci of real numbers such that Ci = pr; with ri E Q and 
Ci -4 C as i -4 00. Then clearly we have Ilf(X)lIe; -4 Ilf(X)lle as i -4 00, so 
we can get the estimate we want by using part 2 for each of the Ci and taking 
the limit. 0 

Now here's an interesting example of the kind of result we are led to. It 
is a version for polynomials of the Weierstrass preparation theorem. 

Proposition 6.2.3 Let C > 0 be some real number, and II II = II lie. Let 

f(X) = ao + a1X + a2X2 + ... + anXn 

be a polynomial in K[X], and suppose that there exists an integer N such 
that 0 < N < n for which we have 

and Ilfll > laj lei for any j > N. 

Then there exist polynomials g(X), of degree N, and h(X), of degree n - N, 
with coefficients in K, such that f(X) = g(X) h(X). Furthermore, we have 

Ilg(X)11 = Ilf(X)11 and Ilh(X) - 111 < 1. 
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PROOF: For the case c = 1, it would not be hard to give a direct proof 
using Theorem 6.1.2. Instead, we give a general argument (in roughly the 
same spirit) that works for all choices of c. The point is to start with an 
approximate factorization and then improve it. If we prove, by induction, 
that this can always be done, it will produce a convergent sequence of poly
nomials which, in the limit, give the factorization we want. In order to make 
the structure of the proof as clear as possible, we separate it into two pieces. 
The first will describe the general induction step. The next will show how 
the induction starts. Putting the two pieces together gives the proof. 

Step: Let {j be a fixed real number, {j < 1. Suppose that at some stage we 
have found polynomials gi(X) and hi(X) satisfying the following conditions: 

i) deggi(X) = Nand deg hi(X) :::::: n - N, 

ii) Ilf(X) - gi(X)llc :::::: {jllf(X)llc and Ilhi(X) - 111c :::::: {j, and 

iii) Ilf(X) - 9i(X)hi (X)llc :::::: {jillf(X)llc. 

(Never mind, for now, where such things might come from.) Let's describe 
how to get two polynomials that give a still better approximation. 

First of all, because II II satisfies the non-archimedean property ("all tri
angles are isosceles"), the condition Ilf(X) - gi(X)llc :::::: {jllf(X)llc implies 
(since {j is less than 1) that Ilf(X)llc = Ilgi(X)llc. Now we find a way to bring 
in the estimates in the previous lemma. 

If we divide f(X) - gi(X)hi(X) by 9i(X), we get 

f(X) - gi(X)hi(X) = q(X) gi(X) + r(X), 

where degr(X) < N, and hence degq(X) :::::: n - N. The previous lemma 
gives inequalities for the absolute values of q(X) and of r(X): 

II (X)II < Ilf(X) - gi(X)hi(X)llc = Ilf(X) - 9i(X)hi (X)llc = {ji < {j 
q c - Ilgi(X)llc Ilf(X)llc 

and 

Ilr(X)llc:::::: Ilf(X) - 9i(X)hi (X)llc = {jillf(X)llc < {jllf(X)llc. 

Now let 

and 

We claim that these will do the job. 
To begin with, since degr(X) < N, we will have deggHl(X) = N. Simi

larly, since deg q( X) :::::: n - N, we get deg hH 1 :::::: n - N. This shows our new 
polynomials still satisfy our first condition. 
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Next, we have 

Ilf(X) - gi+1(X)lle = Ilf(X) - gi(X) - r(X)11 

::; max{llf(X) - gi(X)lle, Ilr(X)II} 

::; ollf(X)lle, 

since we have shown that Ilr(X)lle < ollf(X)lle. Similarly, 

Ilhi+1(X) - 111e = Ilhi(X) -1 + q(X)lle 
::; max{llhi(X) - 111e, Ilq(X)11c} 

::; 0, 

since we have shown that Ilq(X)lle < o. This shows that the second condition 
above still holds. 

Finally, we check that this gives a better approximate factorization: 

f(X) - gi+1(X)hi+1(X) = f(X) - (gi(X) + r(X))(hi(X) + q(X)) 
= f(X) - gi(X)hi(X) - q(X)gi(X) - r(X)hi(X) - r(X)q(X) 

= r(X) - r(X)hi(X) - r(X)q(X) 

= r(X) (1 - hi(X)) - r(X)q(X), 

which gives 

Ilf(X) - gi+1(X)hi+1(X)llc = Ilr(X)lIcll(l - hi(X)) - q(X)llc 

::; Oi max{111 - hi(X) lie, Ilq(X)11c} 

::; oi+11If(X) lie. 

This means that gi+1 (X) and hi+1 (X) satisfy all our conditions, with Oi 
replaced by Oi+1. 

To check that these functions actually form the sort of sequence we want, 
notice that the inequality Ilq(X)lle ::; Oi translates into 

Similarly, the inequality Ilr(X)lle ::; oillf(X)lle translates to 

Since 0 < 1, these inequalities show that both the sequence of the gi(X) and 
the sequence of the hi(X) are Cauchy sequences with respect to the II lie 
norm. 

Start: To start the process, we need to find a 0 < 1 and an initial pair 
g1(X) and a h1(X). But those are relatively easy to find. The assumption is 
that Ilf(X)lle = IaN leN and that the terms of higher degree are smaller. This 
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means that if we subtract off the part of f(X) up to degree N the remaining 
polynomial will have smaller norm. In other words, we will have 

N 

Ilf(X) ~ L aiXillc < Ilflle. 
i=O 

Let IS be a measure of how much smaller: 

N 

Ilf(X) ~ L aiXillc = ISllf(X)llc. 
i=O 

Then, of course, 0 < IS < 1. 
Then let 

and let hI (X) = 1. It is very easy to check that all of our conditions are 
satisfied. 

Convergence: We're almost there. We've got a Cauchy sequence of 
polynomials of bounded degree. And that's enough, by the next problem, to 
guarantee convergence. Taking the limit, we get g(X) and h(X) as specified 
by the Proposition. 0 

Problem 283 Show that a Cauchy sequence of polynomials of bounded degree is 
convergent with respect to the II lie- Show that the hypothesis that the degree is 
bounded is essential. 

Problem 284 The limit of a sequence of polynomials of degree N is a polynomial of 
degree at most N. Why can we assert that g(X) is actually of degree N? 

Problem 285 Show that the polynomial g(X) obtained in our proof has the prop
erty that IIf(X) - g(X)lIc < IIf(X)11c- This can sometimes be a useful extra bit of 
information. 

Problem 286 Show that the polynomial g(X) = L biXi of degree N obtained in 
the theorem satisfies the condition that IIg(X)1I = IbNlcN , i.e., the maximum of the 
Ibilci is attained at the very last term. In particular, this means that we cannot re-apply 
the Proposition to factor g(X) itself. 

Problem 287 What can be said about the speed of the convergence of the sequences 
of polynomials gi(X) and hi(X)? 

Problem 288 Suppose c = 1. Give a proof of the Proposition for this case that is 
just a direct application of Theorem 6.1.2. 
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From polynomials, we go on to power series. Of course, convergence 
questions now become important. It will be useful to remember that the 
power series 

converges for Ix I ::; c if and only if lim Ian Icn = O. This suggests that the same 
idea used for polynomials will make sense here. We first define appropriate 
subrings of the ring of power series with coefficients in K. 

Definition 6.2.4 Let c > 0 be an arbitrary positive real number. We define 
Ae to be the ring of power series E anxn E K[[X]] which satisfy the condition 
lim lanlcn = O. 

Notice that, if f(X) E A e , then f(X) converges for x in the closed unit ball 
of radius c. The next couple of problems check that this works as advertised. 

Problem 289 Show that Ac is indeed a ring, and that it is also a vector space over 
K. 

Problem 290 We have avoided indicating the base field in the notation for Ac so 
that the notation does not become too heavy. For this problem, however, write Ac(K) 
for the ring we get when the field of coefficients is K. It's clear that if Kl C K 2, then 
Ac(Kl) C Ac(K2). Show that in fact we have 

(In other words: the fact that the series is in Ac is independent of the field to which 
we think its coefficients belong.) We will use this fact, as before, to move up and down 
between smaller and bigger fields. 

Problem 291 Suppose c can be written as a rational power of p, i.e., that there exists 
r E <Q such that c = pr. Show that a power series f(X) belongs to Ac if and only if it 
converges in the closed ball in ICp with center 0 and radius c. Is the same true without 
the assumption on c? 

Problem 292 If Cl > C2, show that Aq C A C2 • 

Now we put norms on our spaces: 

Theorem 6.2.5 Let c > 0 be an arbitrary positive real number. Define a 
function II lie: Ae ----4 lR+ as follows: for each power series 

f(X) = ao + a1X + a2X2 + ... + anxn + ... 

belonging to A e , set 

Then we have 
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i) Ilf(X)llc = 0 if and only if f(X) is identically zero. 

ii) Ilf(X) + g(X)llc :s; max{llf(X)llc, Ilg(X)llc}. 

iii) Ilf(X)g(X)llc:S; Ilf(X)llcllg(X)llc. 

iv) II Ilc induces the p-adic absolute value on the constant power series. 

v) Iflxl:S; c, then If(x)l:S; Ilf(X)llc' 

PROOF: This is all easy. Notice that the definition makes sense because 
we know that Ian len tends to zero as n grows, and hence there must be a 
maximum. D 

Problem 293 Prove the theorem. (It is all very straightforward.) 

Problem 294 The game we played above relating the sup-norm for functions on 
B(O, c} with the c-norm on the polynomials makes sense also for power series in Ac. 
Does anything change? 

Problem 295 Once again, the norm does not depend on the base field: show that if 
Kl c K2 then II Ilc on Ac(K2} restricts to IIllc on Ac(Kl}. In particular, when we are 
interested only in computing the norm of some power series, we might as well think of 
it as having coefficients in Cpo 

Problem 296 Suppose K = Cpo Use the idea we used above for polynomials to show 
that if c is of the form pT for some rational number r then there is an isomorphism 
¢ : Ac --> Al which is an isometry, i.e., which satisfies 1I¢(f(X)}lh = Ilf(X)llc' 
What happens when c is not of this form? 

Problem 297 Suppose Cl > C2. Consider the map 

that maps each f(X) to itself (this makes sense because, as we showed in a previous 
problem, Aq C AC2 in this case.). Give Aq the topology defined by II Ilq and give 
AC2 the topology defined by II Ilc2' Is the map L continuous? 

We are now ready to begin to work toward the proof of the main result in 
this section, the Weierstrass Preparation Theorem. This can be viewed as a 
direct extension of Strassman's Theorem from Chapter 4. The goal is to get 
a very close relation between functions defined by power series and functions 
defined by polynomials. 

We will work with the norms described above, but at first will stick to 
e = 1. Hence, we will be working with power series which converge in the 
closed unit ball around the origin, i.e., for any x such that Ixl :s; 1. A series 
I: anxn will have this property if and only if an --+ 0 as n --+ 00, and this is 
what we assume. (Notice that this was also what we needed for Strassman's 
Theorem.) 
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Theorem 6.2.6 (p-adic Weierstrass Preparation Theorem) Let 

be a power series with coefficients in K such that an -t 0 as n -t 00, so that 
f(x) converges for x E CJ. Let N be the number defined by the conditions 

and 

Then there exists a polynomial 

of degree N and with coefficients in K, and a power series 

with coefficients in K, satisfying: 

i) f(X) = g(X) h(X), 

ii) IbNI = max Ibnl, i.e., Ilg(X)lll = IbNI, 

iii) lim en = 0, so that h(x) converges for x E CJ (i.e., h(X) E AI), 
n-H'" 

iv) Icnl < 1 for all n ~ 1, i.e., Ilh(X) -1111 < 1, and 

v) Ilf(X) - g(X)lh < 1 

In particular, h(X) has no zeros in CJ. 

This clearly is closely related to Strassman's Theorem. In fact, since h(X) 
has no zeros in CJ, it is clear that the zeros of f(X) in CJ are exactly the same 
as the zeros of g(X). Since g(X) is a polynomial of degree N, there are at 
most N of these, and we get Strassman's Theorem. If we move to Cp we can 
say more: since Cp is algebraically closed, we get that, counting multiplicities, 
g(X) has exactly N zeros in Cp , and the condition on its coefficients means 
that all of them are in CJ (see the problem below). So we know that, counting 
multiplicities, f(X) has exactly N zeros in CJ, which gives a stronger version 
of Strassman's Theorem. 

Problem 298 Suppose the polynomial g(X) = bo + b1X + ... + bN XN satisfies the 
condition in the theorem: IbNI = max Ibnl. Show that if g(a) = 0, then lal :s; 1. 

Proving the Weierstrass Preparation Theorem will take a while, and will 
require some effort. We will do it by means of a series of lemmas of various 
kinds. To begin to set everything up, recall that Al is the ring of power series 
that converge in CJ; in other words, a power series 
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belongs to Al if and only if an ----> 0 as n ----> 00. We already know that defining 

Ilf(X)11 = Ilf(X)lll = max lanl 
n 

gives a norm on Al (we will drop the subscript 1, since this is the only norm 
we'll be working with in this proof). The first step of the proof is to prove 
that AI, with this norm, has very nice properties. 

Lemma 6.2.7 Al is complete with respect to the norm II II. 
PROOF: We have to show that a Cauchy sequence in Al (with respect to the 
norm II II) converges. So consider a sequence of power series 

fi(X) = aiQ + ailX + ai2X2 + ai3X3 + ... 

Saying this sequence is Cauchy amounts to saying that for each c > 0 there 
exists an M such that we have Ilfi(X) - fJ(X)11 < c whenever i, j > M. 
Translating that inequality, we get that 

max lain - ajnl < c 
n 

whenever i, j > M 

which certainly implies that 

for each n, whenever i, j > M 

In other words, each of the sequences (ain)i is Cauchy. Since K is complete, 
that means they are all convergent. 

So, for each n, let 

and consider the series 

an = lim ain, 
i----7OO 

We obviously want to say that it is the limit of the sequence of series. To see 
that, we need two things: first, we need to estimate 

Ilfi(X) - g(X)11 = max lain - ani 
n 

and show that it goes to zero; next, we need to show that g(X) is actually in 
AI. 

The first part is easy: we know that if i, j > M we have lain - ajnl < c 
for every n. Letting j ----> 00, it follows that if i > M we have lain - ani ~ c 
for all n, which means that 

so that fi(X) ----> g(X) with respect to 1111. 
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For the second part, we use what we have just proved. For i > M, we 
know that lain - ani < c for every n. Now, since fi(X) E AI, we know 
that ain --> 0 as n --> 00, i.e., that for each i there exists an Mi such that 
lainl < c for all n > Mi. Choose any i > M. Then if n is greater than the 
corresponding Mi we have 

It follows that an --> 0 as n --> 00. 

Thus, fi(X) --> g(X) and g(X) E AI; since this works for any Cauchy 
sequence of power series, it shows that Al is complete. D 

Problem 299 Go through that proof and make sure it works as advertised. Make 
sure you understand the different roles of i and n. 

Problem 300 Consider the sequence fnCX) = 1 + X + X2 + ... + xn. Clearly all 
the fnCX) belong to AI. Does this sequence converge? 

Problem 301 Is Ae complete with respect to the norm II lie? 

The complete space Al contains the polynomials as subspace. It is natural 
to guess that they are in fact a dense subspace. This does turn out to be the 
case: 

Lemma 6.2.8 The space of polynomials K[X] is dense in AI. 

PROOF: We need to show that any power series is the limit of a sequence of 
polynomials. Let 

be a power series in AI, so that an --> 0 as n --> 00. We need to get a 
sequence of polynomials which approximate f(X) (with respect to the II III 
norm). The obvious choice is to take the truncations of f(X). So let 

fo(X) = ao 

h(X) = ao + alX 

h(X) = ao + alX + a2 X2 

Then we have 
Ilf(X) - A(X)lh = max lanl, 

n>k 
which tends to zero because an --> o. Then fk(X) --> f(X), so that f(X) is 
a limit of polynomials. D 
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Problem 302 Check that if we have an --+ 0, then also 

lim max lanl = O. 
k--+oo n>k 

Problem 303 Will this proof work if we replace II lit by II lie? 

We will often use the fact that the polynomials are dense in the space 
of convergent power series to prove things about power series by using facts 
about polynomials. The main issue in such a proof will be to check that the 
properties we are interested in are preserved when taking limits. The next 
lemma is an example of this: it is a version for series of a lemma we proved 
for polynomials: 

Lemma 6.2.9 Let f(X) E A1 be a power series converging in the closed unit 
disk, and let 

g(X) = bo + b1X + ... + bNXN 

be a polynomial with coefficients in K satisfying 

IbNI = max Ibil . 
• 

Then there exist a power series q(X) E A1 and a polynomial reX) E K[XJ, 
of degree less than N, such that 

f(X) = g(X) q(X) + reX) 

where q(X) and reX) satisfy 

Ilf(X)11 ~ IIg(X)llllq(X)11 and Ilf(X)11 ~ Ilr(X)II· 

PROOF: The idea of the proof is to use the statement for polynomials to 
obtain the statement for series, using the fact that any power series is the II 111-
limit of polynomials. So let fk(X) be a sequence of polynomials converging 
to f(X). By Lemma 6.2.2, one can find polynomials qk(X) and rk(X) such 
that 

and degr(X) < degg(X) 

and which satisfy the conditions 

and Ilh(X)11 ~ Ih(X)II· 

We need to show that as k ~ 00 the sequences qk(X) and rk(X) converge. 
Since we have already shown that the space A1 is complete, what we need to 
do is show that these sequences are Cauchy. 

To see that, consider the equations 

and 
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Subtracting one from the other gives 

Now, since both rk(X) and rk+I(X) have degree less than N, so does their 
difference. What that means is that qk+I(X) - qk(X) is the quotient and 
rk+I(X) -rk(X) is the remainder when we divide fk+I(X) - A(X) by g(X). 
Using Lemma 6.2.2 yields the estimates 

and 
Ih+1(X) - rk(X)11 :s:: Ilfk+I(X) - A(X)II· 

Finally, remember that the sequence fk(X) is convergent, hence Cauchy, so 
that 

lim Ilfk+I(X) - fk(X)11 = O. 
k-+oo 

It follows that 

which, since the norm is non-archimedean, means that both sequences are 
Cauchy, hence convergent. Letting r(X) = lim rk(X) and q(X) = lim qk(X) 
gives the equation we want; furthermore, since each rk(X) is a polynomial 
of degree less than N, so is r(X). Finally, the estimates on the norms are 
clearly preserved by passing to the limit, so that we are done. 0 

We now see how to prove the Weierstrass Preparation Theorem. The point 
is to notice that it is just the power series version of Proposition 6.2.3. The 
proof of that proposition was a direct application of the Lemma preceding it, 
whose power series version is the Lemma we have just proved. Hence ... 

PROOF OF THE WEIERSTRASS PREPARATION THEOREM: Mimic the proof of 
Proposition 6.2.3 replacing calls to Lemma 6.2.2 with calls to Lemma 6.2.9.0 

Problem 304 Make sure you understand how to prove the Theorem. How does one 
prove the various statements about g(X) and h(X)? 

Problem 305 Why is it, in the statement of the Weierstrass Preparation Theorem, 
that the conditions on the power series h(X) imply that it has no zeros in <9? 

The power of the Weierstrass Preparation Theorem will only become clear 
from its applications. To get some idea of how it is used, let 

be a power series converging in the closed unit disk, so that an --t 0 (in other 
words, f(X) E AI). Let N be chosen as in the theorem: 

and 
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Then, according to the Theorem, f(X) can be factored as g(X) h(X), where 
g(X) is of degree Nand h(X) is a power series with no zeros of absolute 
value :s: 1. We want to consider the roots of g(X), so we move, for a while, 
to Cpo Since Cp is algebraically closed, we can factor g(X) as a product 

g(X) = bo + b1X + b2X 2 + ... + bNXN 

= bN(X - a1)(X - a2) ... (X - aN), 

where aI, a2, .. , aN are the roots of g(X) (counted with multiplicities). This 
shows that f(X) will have exactly N zeros in D, counted with multiplicities, 
and also gives a precise sense to the "multiplicity" of a zero of a p-adic 
power series converging on D: it is just the multiplicity of that zero in the 
polynomial appearing in the Weierstrass factorization. 

Problem 306 This problem (taken from [Cas86]) gives an alternative definition for 
the multiplicity of a zero. Let f(X) E Al be a power series converging on <9. Consider 
the successive derivatives f(X), f'(X), reX), ... , f(n)(x). Show that for any xED 
there must exist an n such that 

f(x) = f'(x) = ... = j<n-I)(x) = 0 but 

Show that n is equal to the multiplicity, as defined above, of x as a zero of f(X). 
Conclude that the sum of the multiplicities of all the zeros is exactly N. Why is 
Cassels' definition nicer than the one given above? 

Just as we did for Strassman's Theorem, we can easily apply the Weier
strass Preparation Theorem to functions defined on bigger or smaller balls 
around zero by scaling the variable appropriately. 

Problem 307 Let c = pT for some r E Q. Let f(X) be a power series converging in 
the closed ball of radius c around zero. Explain how to use the Weierstrass Preparation 
Theorem to count the number of zeros of f(X). Does anything change if we take more 
general values for c? 

While the previous problem shows that the Weierstrass Preparation The
orem, as given above, can be applied in a large number of situations, it is 
tidier to find a version that applies not only to the II II 1 norm but also to the 
other norms II lie. The statement is not hard to find: 

Theorem 6.2.10 (p-adic Weierstrass Preparation Theorem) Let c be 
a positive real number, and let 

be a power series with coefficients in K such that lanlcn ----t 0 as n ----t 00, 

so that f(x) converges for x E B(O, c). Let N be the number defined by the 
conditions 

laNlcN = maxlanlcn = IIf(X)IIc and lanlcn < laNlcN for all n > N. 
n 
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Then there exists a polynomial 

of degree N and with coefficients in K, and a power series 

with coefficients in K, satisfying: 

i) f(X) = g(X) heX), 

ii) IbNlcN = max Ibnlcn, so that IIg(X)lle = IbNlcN, 

iii) heX) E A e , 

iv) Idnlcn < 1 for all n 2:: 1, so that [[heX) -l[[e < 1, and 

v) [[f(X) - g(X)lle < 1. 

In particular, heX) has no zeros in B(G, c). 

Problem 308 Prove the generalized p-adic Weierstrass Preparation Theorem. (Hint: 
you will need to generalize Lemma 6.2.9 to arbitrary c; for that, you might imitate the 
trick used in the proof of Lemma 6.2.2.) 

Problem 309 Let 

X2 X 3 

f(X) = log(1 + X) = X - "2 + "'3 + ... 

Count the number of zeros in various balls. (We can clearly divide this by X in order 
to get a series whose zeroth term is 1. The resulting series converges in the open ball 
of radius 1, so we need to consider various closed balls of smaller radius.) How many 
zeros does the series have (in Cp , of course) in the open unit ball around zero? 

6.3 Entire Functions 

One of the applications of the Weierstrass Preparation Theorem is the de
scription of "entire" p-adic power series, i.e., power series which converge in 
all of Cpo This is actually quite easy, but offers a nice enough example that 
we decided it deserved its own section. 

For this section, then, let f(X) be a power series which converges in all 
of Cpo If we write it out, 
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we must have Ian len -+ 0 for any e E R We can also write this in terms of 
vp as vp(an) - kn -+ +00 for any k E Q. Dividing by n gives 

for any k, which just amounts to 

In other words, a power series will be entire if vp(an) tends to infinity better 
than linearly. 

Very well, suppose we have such a power series. If ao = 0, we can factor 
out a power of X so that the remaining series has zeroth coefficient not equal 
to zero. So, for our purposes, we might as well assume that ao -=I- 0; in that 
case, we can divide by ao and assume that the zeroth coefficient is equal to 
one. So let 

f(X) = 1 + alX + a2X2 + a3X3 + ... 

and assume that vp(an)jn -+ 00, so that f(X) is entire. Our plan to under
stand the zeros of f(X) is to apply the Weierstrass Preparation Theorem in 
larger and larger balls around zero. 

So begin with the closed unit ball: a straight application of the theorem 
says that we can factor f(X) as go(X) ho(X) where go(X) is a polynomial 
(whose degree is given precisely in the theorem, but that won't matter all that 
much here) and where ho(X) is a power series of the form l+blX +b2X 2+ ... 
with Ibil < 1. Since Cp is algebraically closed, go(X) factors into a bunch of 
linear terms, which we can write as follows: 

N 

go(X) = II (1 - AiX ), 
i=1 

since we are assuming that ao = 1. Notice that the Ai are not the roots of 
go(X), but rather the reciprocals of the roots of go(X); the reason for this 
particular bit of perverseness will become clear soon. In any case, the upshot 
is that 

N 

f(X) = ho(X) . II (1 - AIX), 
i=1 

where Ilho(X) - 1111 < 1. 

Problem 310 Show that any polynomial g(X) satisfying g(O) = 1 can be written in 
the form 

g(X) = II (1 - AX), 

where A runs through the reciprocals of the roots of g(X). 
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Now what happens when we look at a bigger ball? Consider, say, the 
closed ball of radius p around the origin. To apply the (II Ill-forml of the) 
Weierstrass Preparation Theorem, we need to change variables: let II (Y) = 
f(Ylp). Then plugging in x E B(O,p) into f(X) amounts to plugging in y = 

px into II (Y), so the roots of f (X) in the ball we are looking at correspond to 
roots of II (Y) in the unit ball. Finally, it's clear that II (Y) is still entire (if 
f(a) converges for every a then so does f(alp)), and that the first coefficient 
is still equal to 1. Applying the theorem gives 

with, as before, gl(Y) a polynomial and ICil < 1. To get back to f(X), we 
just replace Y by pX to get 

with Idil = Ipicil < 1lpi. Now gl(pX), whatever it is, is just another poly
nomial, whose roots give the roots of f(X) in the closed ball of radius p. (It 
is therefore divisible by go(X); do you see why?) So we can repeat the trick: 

Nl 

gl(pX) = II(1- AiX ), 
i=l 

where now the Ai are the reciprocals of the roots of f(X) in the closed ball 
of radius p. In other words, we've got f(X) written as 

Nl 

f(X) = h1(X)· II (1- AiX). 
i=l 

The inequalities on the di show that we have Ilh1 (X) - 111p < 1, and also 
show that Ilhl(X) - 1111 < lip. Notice that this inequality implies that if 
x E B(O,p) then we must have Ihl(x) -11 < 1, which implies that hl(X) =I- 0; 
in other words, the inequality shows that hl(X) has no zeros in the closed 
ball of radius p. 

Problem 311 Explain why go(X) is a factor of gl(PX). 

We can now understand why it's nice to use the reciprocals of the roots: 
they do two things for us. First, they give a clean way to write a product 
expression for a polynomial whose independent coefficient is 1 (and whose 
top coefficient might be anything). Second, and more interesting, notice that 
as our ball grows, the Ai get smaller: if the root has absolute value p, say, 
then IAil = lip, which is cheering if we're looking for convergence. 

And we are. The reader can probably see what's coming by now: we work 
in bigger and bigger disks. The polynomial part gives a longer and longer 

lUsing Theorem 6.2.10 would also work well. 
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product expression (since the disks are nested in each other, the roots that 
appear for a disk reappear in any bigger disk, so that the product is indeed 
growing longer rather than just changing). The Ai that appear in the product 
expression are reciprocals of roots with larger and larger absolute value, so 
they get smaller and smaller. The other factor gets closer and closer to 1. In 
the limit, we get just the product! So we've proved: 

Proposition 6.3.1 Let f(X) = 1 + a1X + a2X2 + ... be a power series 
defining an entire function on Cpo Then f(X) has a finite number of zeros 
in any closed ball around the origin, and a countable number of zeros in Cpo 
The reciprocals of these zeros form a sequence Ai tending to zero, and f(X) 
can be written as an infinite product 

00 

f(X) = II (1 - AiX) 
i=l 

(with convergence in the II lie metric for any c). 

PROOF: We've done it all except for the remark on convergence. What we 
showed was that the infinite product converged to f(X) in the II 111 metric. 
But f(X) is entire, and as usual we can change variables to handle the II lie 
metrics. D 

Problem 312 Have we really "done it all"? Make sure you see that the proof is 
indeed to be found in the text above. 

Problem 313 Explain the cryptic remark at the end of the proof. How would one 
prove that the product converges to f(X) in the II lie topology? 

Problem 314 One might also want to understand in what sense the functions given 
by the partial products converge to the function defined by f(X). Show that the 
convergence is uniform in any closed ball around zero (this is easy if you know about 
uniform convergence). One almost wants to say that the convergence is "uniform 
on compact sets" ... if it weren't for the slight detail that closed balls in Cp are not 
compact! 

Passing from power series whose initial term is 1 to general power series 
is easy: 

Corollary 6.3.2 Let f(X) be a power series defining an entire function on 
Cpo Then f(X) can be written as an infinite product 

00 

f(X) = axr II (1 - AiX ), 
i=l 

where a E Cp , r is an integer, r 2: 0, and Ai ranges through the reciprocals of 
the nonzero roots of f(X), which form a sequence tending to zero. 
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This is very similar to, but also simpler than, a classical result about 
complex entire functions; see, for example, [Ah179, Chapter 5, Section 2.3]. 
It is the starting point for any serious study of p-adic entire functions. 

Problem 315 We haven't really met any (non-polynomial) entire functions. Can you 
give an example? 

Problem 316 Show that the product expansion can be used to construct entire func
tions: take a sequence Ai tending to zero; does it make sense to define a function by 

00 

f(x} = II (1 - AiX )? 
i=l 

For which x does this converge? Can the resulting function be expressed as a power 
series? What we are aiming for, of course, is a converse of Corollary 6.3.2.} 

6.4 Newton Polygons 

One of the best ways to understand the theory of polynomials and power 
series with coefficients in a complete p-adic field K is to introduce the concept 
of the Newton polygon of a polynomial (and later of a power series also). This 
gives us a clear geometric picture that encodes much of the information we 
have collected about the zeros of polynomials and power series. 

We begin, once again, by considering polynomials. We will define the 
Newton polygon and then explore its meaning in a leisurely way. As before, 
we will work in a field K, which will either be a finite extension of Qp or equal 
to Cp (in particular, K is complete with respect to the p-adic valuation). 
So let f(X) E K[X] be a polynomial. Since we are mostly interested in 
understanding the zeros of f(X) we may as well factor out any powers of X 
which divide f(X). In other words, we may assume that f(O) i=- o. Then, 
dividing through by f(O), we may also assume that f(O) = l. 

Thus, we take a polynomial 

with ai E K. On a set of axes, we plot the points (0,0) and, for each i 
between 1 and n, (i,vp(ai)). (There is one caveat: if ai = 0 for some i, it is 
not clear what vp(ai) is to be; we just take it to be +00, and think of the 
point as "infinitely high." In practice this just me am; that we ignore that 
value of i.) The polygon we want to consider is, in fancy terms, the lower 
boundary of the convex hull of this set of points. In less fancy terms, we can 
think of it this way: 

i) Start with the vertical half-line which is the negative part of the y-axis 
(i.e., the points (0, y) with y :::; 0). 
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ii) Rotate that line counter-clockwise until it hits one of the points we have 
plotted. 

iii) "Break" the line at that point, and continue rotating the remaining 
part until another point is hit. 

iv) Continue until all the points have either been hit or lie strictly above a 
portion of the polygon. 

(One mayor may not want to think of the polygon as ending with an infinitely 
long vertical line going upwards; we will prefer to simply cut off the polygon 
at its last vertex.) 

The resulting polygon is called the Newton polygon of the polynomial 
f(X). Notice that, in the same spirit as before, the polygon depends only 
on the vp(ai), which do not depend on which field we think the ai belong to. 
In other words, the polygon belongs to the polynomial, rather than to the 
polynomial as an element of K[X]. 

It may be that an example helps more at this point than any number of 
words. Let's take p = 5 and consider the polynomial 

f(X) = 1 + 5X + ~X2 + 35X3 + 25X5 + 625X6 . 

The points we want to work with are 

(0,0) (1,1) (2, -1) (3,1) (5,2) (6,4) 

(as agreed, we simply ignore the missing term of degree 4, or think of its 
point as "very, very high up"). Plotting these points gives figure 6.1. The 
process with the rotating line gives the polygon in figure 6.2. 

The first portion of this section will focus on how to extract information 
about the roots of the polynomial from this polygon. The crucial things in 
which we will be interested will be: 

i) the slopes of the line segments appearing in the polygon-we will call 
these the "Newton slopes" of f(X); 

ii) the "length" of each slope (by which we mean the length of the projec
tion of the corresponding segment on the x-axis); 

iii) the "breaks," i.e., the values of i such that the point (i,vp(ai)) is a 
vertex of the polygon. 

In our example, the slopes are -1/2, 1, and 2, of lengths 2, 3, and 1, 
respectively, and the breaks happen when i = 0, 2, 5, 6. Notice that the 
sum of all the lengths will always be equal to the degree, and that (0,0) and 
(n,vp(an )) will always be vertices. It is also clear from the "rotating line" 
construction that the slopes will form an increasing sequence. 
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Figure 6.1: Points for f(X) = 1 + 5X + iX2 + 35X3 + 25X5 + 625X6 
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Figure 6.2: Newton polygon for f(X) = 1+5X +.g.X2+35X3+25X5+625X6 
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ProbleIll 317 Let p=5. Work out the Newton polygon of the following polynomials: 

i) 1 + X + X2 + X 3 + X4 + 2X5 + 100X6 

ii) 1 + X + X2 + X 3 + X4 + 2X5 + 1~OX6 
iii) 3 + 5X + 4X2 + 35X3 + 40X4 + 1250X5 + 100X6 (Remember that in our 

discussion above we normalized things so that f(O) = 1. That means you must 
divide through by 3 before making the polygon ... but must you really?) 

iv) 3 + 5X + 4X2 + 35X3 + 40X4 + 1250X5 + 100X6 + 5X10 (How does this relate 
to the previous one?) 

ProbleIll 318 Suppose a polynomial F(X) satisfies the condition in the Eisenstein 
irreducibility criterion over <Qp (i.e., it is an "Eisenstein polynomial"). Let f(X) be 
the polynomial obtained by dividing F(X) by whatever number is necessary so that 
f(O) = 1. Describe the Newton polygon of f(X). 

ProbleIll 319 It might be useful to generalize the definition in order to remove the 
condition f(O) = 1, and just assume f(O) oF O. How would the definition change? What 
would be the relation between the polygons of f(X) and of af(X) (for a E KX)? 

In order to begin to see what information is hidden in the Newton polygon 
of a polynomial, let's begin by seeing the significance of the breaks. What we 
want to do is to consider a polynomial f(X) = 1 +a1X +a2X2+ . +anXn and 
look at its norms Ilf(X)llc for many different c. Since the norm corresponding 
to c is essentially the sup-norm on the closed ball of radius c centered at 0 
(in <Cp ), it is easy to see that they satisfy 

If Cl > C2, then Ilf(X)llcl ?: Ilf(X)llc2' 

(It's also very easy to give a direct proof of this.) So, if we start with a very 
small c and gradually increase it, the norms Ilf(X)llc will also increase. This 
observation will help interpret the breaks in the Newton polygon. 

Let's look at the first segment of the Newton polygon. If this segment 
has slope m, it connects the point (0,0) to some other point (i, mi). (So that 
the first Newton slope is m, and it has length i.) Let's think about what 
that means. First, it means that there are no points below the line y = mx; 
in other words, vp(aj) ?: mj for every j. Second, the point (i, mi) itself tells 
us that vp(ai) = mi. Third, the fact that there is a break tells us that the 
subsequent points are really above the line; in other words, vp( aj) > mj if 
j > i. 

Translating from valuations to absolute values, we get 

• lajl ::; p-mj = (p-m)j for all j, which we can rewrite as lajl(pm)j ::; 1 for 
all j, 

• lail = p-mi, which we can rewrite as lail(pi)m = 1, and 

• lajl < p-mj if j > i, which we can rewrite as lajl(pm)j < 1 if j > i. 
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mi 1------------"""71 

i 

Figure 6.3: The first segment 

If we now let c = pm, we can read these conditions in terms of the c-norm. 
They say: 

• Ilf(X)lIc = 1, and 

• i is the largest integer such that Ilf(X)llc = lailci. 

In other words, the fact that the first break is at (i, mi) means that if we take 
c = pm then Ilf(X)llc = 1 and i is the distinguished number that appears 
in Proposition 6.2.3. In particular, we see that if i is less than the degree of 
f(X), then f(X) is divisible by a polynomial of degree i. 

Just this is already quite nice. Let's follow Cassels in making the following 
definition: 

Definition 6.4.1 A polynomial f(X) E K[X] is called pure if its Newton 
polygon has only one slope. If this slope is m, we will say f(X) is pure of 
slope m. 

Then we can state what we have just observed as: 

Proposition 6.4.2 Irreducible polynomials are pure. 

PROOF: A break at (i, mi) yields, by the discussion above, a factor of degree 
i; hence, if there is a break at i f= 0, n, the polynomial is reducible. D 

In fact, we can go further, by noticing that a polynomial h(X) = 1+b1X + 
b2 X 2 + ... + bnxn will be pure of slope m, according to the discussion above, 
exactly when it has the the property that, for c = pm, Ilf(X)llc = Ibnlcn = 1, 
i.e., the maximum occurs at the end and is equal to 1. 
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Problem 320 Prove that a polynomial h(X) = 1 + b1X + b2 X 2 + ... + bnxn is pure 
of slope m if and only if we have Ilf(X)llp~ = Ibnlpmn = 1. 

Using this, we can push the analysis further: 

Proposition 6.4.3 Let 

and assume the Newton polygon of f(X) has its first break at (i, mi). Then 
there exist polynomials g(X), h(X) E K[X] satisfying: 

i) f(X) = g(X)h(X), 

ii) g(X) has degree i and is pure of slope m, 

iii) h(X) has no zeros in the closed ball of radius pm around o. 
PROOF: This has all been proved already; it's just a matter of putting all 
the pieces together. D 

Problem 321 Put all the pieces together. 

The connection between "pureness" and polynomial factorization is im
portant. Here is another data-point: 

Problem 322 Let f(X) and g(X) both be pure polynomials of slope m. Show that 
their product is also pure of slope m. 

We are still not done thinking of the meaning of the first break. .. What 
we still need to do is understand what is the significance of the slope of the 
first segment. That isn't hard to do. 

Lemma 6.4.4 Let f(X) = l+a1X +a2X2+ .. ·+anXn E K[X], and assume 
that the first break of the Newton polygon of f(X) occurs at the point (i, mi). 
Let c be any positive real number less than pm. Then we have Ilf(X)lle = 1 
and Ilf(X) - llle < 1. 

PROOF: If Ilf(X) - llle < 1, then we must have Ilf(X)lle = 1 by the usual 
"all triangles are isosceles" yoga, so we only need to prove the inequality. 

A line through the origin with slope ml < m (e.g., the dotted line in 
figure 6.3) passes below all the points on the polygon, touching it only at 
(0,0). This means that vp(aj) > mlj for every j > o. Translating to absolute 
values, this means that laj I < p-md, or laj I (pm 1 )j < 1 for any j > O. 
Since aD = 1, the zeroth coefficient of f(X) - 1 is just 0, and therefore also 
lao -11 < 1. It follows that Ilf(X) -llle < 1 for c = pm1 • D 

This already gives one way to characterize the first slope, as the next 
problem shows: 
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Problem 323 Show that if the first break happens at (i, mi), and Cl > pm, then 

Ilf(X)llq > 1. 

We can read this as saying that c = pm is the largest value of c such 
that Ilf(X)lle = 1, which gives an interpretation of the slope of the first seg
ment. The more interesting interpretation, however, has to do with obtaining 
information about zeros: 

Lemma 6.4.5 Let f(X) = 1+a1X +a2X2+ .. ·+anXn E K[X], and assume 
that the first break of the Newton polygon of f(X) occurs at the point (i, mi). 
Let c be any positive real number less than pm. Then f(X) has no zeros in 
the closed ball in Cp of radius c around O. 

PROOF: The previous lemma says that Ilf(X) - 111e < 1. From that, it 
follows that for any x such that Ixl :::; c we have If(x) - 11 < 1, which 
certainly implies that f(x) i= O. Thus, f(X) has no zeros in B(O, c). 0 

So let's put it together: if there's a break at (i, mi), then 

• If c < pm, f (X) has no roots (even in Cp ) in the closed ball of radius c . 

• f(X) factors as the product of a pure polynomial g(X) of slope m and a 
polynomial which has no roots in the closed ball of radius pm. 

What about the roots of g(X)? Well, any root of g(X) is a root of f(X), 
so we know that g(X) has no roots of absolute value less than pm. On the 
other hand, if ell, el2, ... , eli are the roots of g(X) (in Cp , with multiple 
roots listed repeatedly), then we must have 

g(X) = (1 - elll X)(1 - el21 X) ... (1 - eli I X), 

and hence the top coefficient of g(X) is equal to (ellel2 ... elm)-l. Since g(X) 
is pure, this must have valuation mi; since we already know vp ( elj) < -m, 
it follows that all of the elj have valuation exactly equal to -m. Translating 
back, all the roots of g(X) have absolute value pm. 

Problem 324 Generalize the argument above to show that all the roots of any pure 
polynomial of slope m have absolute value pm (or, equivalently, valuation -m). 

Putting all the pieces together, we get: 

Proposition 6.4.6 Let f(X) = 1 + alX + a2X2 + ... + anXn E K[X], and 
assume that the first break of the Newton polygon of f(X) occurs at the point 
(i, mi). Then f(X) has no roots with absolute value less than pm and has 
exactly i roots (counting multiplicities, in Cp ) with absolute value pm. 

Very well, let's move on to the second segment. In other words, let's 
assume that there are breaks at (i,mi) and at (k,mi+m'(k-i)), so that the 
first slope is m and has length i and the second slope is m' and has length 
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Figure 6.4: The second segment 

k - i. All that we have obtained about the first segment still works, of course, 
so what we want to understand is the second segment. 

For that, we first translate the fact that the second statement has slope 
m'. The line through (i, mi) with slope m' has equation 

y = mi + m' (x - i), 

and we know the following things. 

• (i, mi) and (k, mi + m'(k - i)) are on the line; in other words, vp(ai) = mi 
and vp(ak) = mi + m'(k - i). 

• All the points between i and k are on or above the line. In other words, 
vp(aj) ~ m'(x-j) +mi ifi <j < k. 

• All the points beyond k are strictly above the line. In other words, vp (aj) > 
m'(x - j) + mi if j > k. The same inequality holds for j < i, as is very 
easy to see (draw a picture!). 

Now we translate all this to absolute values. Our inequalities say that 

• lakl = p-m'(k-i)-mi = p-m'kp(m'-m)i, 

• For i ::::; j ::::; k, we have lajl ::::; p-m'(j-i)-mi = p-m'jp(m'-m)i, 

• For j < i and for j > k, we have lajl < p-m'(j-i)-mi = p-m'jp(m'-m)i. 

Which we rewrite once again by taking c = pm' : 
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• laj 1& :::; p(m' -m)i for all j, 

• the equality holds for j = k, and 

• the inequality is strict for j > k. 

In other words, we get, for c = pm', that Ilf(X)llc = p(m'-m)i (and notice 
that since m' > m this is bigger than 1) and that k is the distinguished 
number in Proposition 6.2.3 (i.e., the maximum is realized at the degree k 
term). Using the proposition, we again find a factor g(X), which now need 
not be pure (why?). In any case, we can go through a process completely 
analogous to what we did before to conclude that f(X) has exactly k roots 
in the closed ball of radius pm', i of which have absolute value pm (we knew 
that already), and k - i of which have absolute value pm'. Of course, we can 
go through a similar argument at the other breaks, and get roots with bigger 
absolute values. In the end, we'll get all the roots, and we'll know exactly 
what their absolute values should be: 

Theorem 6.4.7 Let f(X) = 1 + alX + a2X2 + ... + anxn E K[X] be a 
polynomial, and let ml, m2, ... , mr be the slopes of its Newton polygon (in 
increasing order). Let h, i 2 , .•. , ir be the corresponding lengths. Then, for 
each k, 1 :::; k :::; r, f(X) has exactly i k roots (in Cp , counting multiplicities) 
of absolute value pmk . 

PROOF: Just repeat the arguments we went through above at each break in 
the polygon. D 

Notice that since the sum of all the lengths is equal to the degree, the 
theorem accounts for all the roots of the polynomial. 

Problem 325 Fill in the complete details of the analysis of the second break, and 
convince yourself that the argument will indeed work at the other breaks. 

Notice that one of the things that follows from the theorem is the fact 
that the factor g(X) of f(X) whose existence follows from the existence of 
a break (together with Proposition 6.2.3) has the same Newton polygon as 
f(X) up to that break. This shows that the polygons and the factors they 
tell us about are really tightly connected. 

Problem 326 Suppose the Newton polygon of f(X) has breaks, as above, at i and 
k, with slopes m and m' of length i and k - i, respectively. Our discussion shows that 
there exists a polynomial gl(X) of degree i which is pure of slope m and divides f(X), 
and a polynomial g2(X) of degree k whose Newton polygon coincides with that of 
f(X) up to k. Show that gl(X) is a divisor of g2(X). Let h(X) denote the quotient, 
so that g2(X) = gl(X)h(X). Is h(X) pure? 

Problem 327 Suppose the Newton polygon of f(X) starts with a segment of slope 
m. Let A be a root of f(X) with absolute value pm (one exists, by the discussion 
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above). Let h(X) be the polynomial such that f(X) = (1 - ).-1 X)h(X) (it exists, 
since A is a root). Can you relate the Newton polygons of f(X) and of h(X)? 

Problem 328 Go back to the polygons you drew above, and explain what they tell 
you about the roots of their polynomials. 

Problem 329 Consider the polynomials f(X) = 1 + X + p300 X lOO and g(X) = 
1+X +plOO X lOO . These polynomials are "very close," since we have IIf(X)-g(X)lh = 
p-lOO Are their Newton polygons close? What is similar in the two polygons? What 
is different? 

Problem 330 The previous problem showed that two polynomials can be very close 
with respect to the II Ih -norm, and still have different numbers of roots in balls of 
radius larger than one. What condition would you need in order to be able to conclude 
that f(X) and g(X) have the same number of roots in the closed ball of radius c? 

The moral of the story so far is that Newton polygons codify quite a lot 
of information about the zeros of polynomials. That should encourage us in 
the next step, which is to consider the Newton polygon of a power series. 

The definition is formally identical: given a power series of the form 

we plot the points 

for i = 0, 1, 2, ... , 

ignoring, as before, any points where ai = o. The Newton polygon of f(X) is 
again obtained by the "rotating line" procedure. In this case, however, things 
are more complicated than in the case of polynomials. An example will do 
more to explain what can happen than any number of generic descriptions. 

Consider the power series 

f(X) = 1 + pX + pX2 + pX3 + ... + pxn + ... 

The points we get are 

(0,0), (1,1), (2,1), (3,1), ... 

Now, clearly the line can sweep unbroken until it is horizontal, but then we 
have the following curious situation: 

• none of the points (i, 1) are on our line (so there is nowhere to "break" it), 
but 

• if we rotate the line ever so slightly, some points will be left behind. More 
precisely, for any positive slope E there exists an i such that Ei > 1, so that 
the point (i, 1) is below the line y = EX. 
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This means that we must amend our rules for obtaining the Newton poly
gon to account for this possibility. So here are revised rules: 

Start with the vertical half-line which is the negative part of the y-axis 
(i.e., the points (0, y) with y :::; 0). Rotate that line counter-clockwise until 
one of the following happens: 

i) The line simultaneously "hits" infinitely many of the points we have 
plotted. In this case, stop, and the polygon is complete. 

ii) The line reaches a position where it contains only one of our points (the 
one currently serving as the center of rotation) but can be rotated no 
further without leaving behind some points. In this case, stop, and the 
polygon is complete. 

iii) The line hits a finite number of the points. In this case, "break" the 
line at the last point that was hit, and begin the whole procedure again. 
Notice that the segment beginning at the last point hit may find itself 
immediately in the situation of case (ii), so that there may be no further 
change. 

This procedure pretty much assumes that the power series is really a 
series, rather than a polynomial. To handle the case of a polynomial in a 
unified way, we would have to add one further stopping procedure: if the line 
reaches the vertical position (after rotating 180 degrees), we stop. The New
ton polygon of a polynomial will then end with an infinite vertical segment. 

Notice that there are only three ways for the procedure to end: 

i) the last segment contains an infinite number of points, 

ii) the last segment contains a finite number of points, but can be rotated 
no further, 

iii) there is an infinite sequence of segments of finite length. 

Problem 331 Can it happen that "the line can be rotated no further" from the very 
beginning, 50 that the Newton polygon gets reduced simply to the negative half of the 
y-axis? 

Let's look at a simple example. Take the power series for 

1 f(x) = = 1 + pX + p2 X2 + p3 X 3 + ... + pn Xn + ... 
I-pX 

The points (i, vp ( ai)) are just 

(0,0), (1,1), (2,2), (3,3), ... , (i, i), 

We are in the first case above, and the polygon comes out to be a line of 
slope one which contains infinitely many points (figure 6.5). 
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Figure 6.5: Newton polygon for 1 + pX + p2 X 2 + p3 X3 + ... + pnxn + ... 

To work out the radius of convergence of this series, we need to compute 

limsup v'lanl = lim sup v'p-n = lip. 
n---.oo n---.oo 

It follows that the series converges for Ixl < p and diverges for Ixl > p. 
To handle the remaining case, notice that if Ixl = p, then clearly Ipnxnl = 
p-npn = 1, and the series does not converge. As we will soon prove, the fact 
that the Newton polygon ends in (in fact, is) a line of slope 1 is connected 
with the fact that the region of convergence is the open ball of radius pl. 

We have already seen an example of a series whose Newton polygon falls 
into case (ii) above: 

f(X) = 1 + pX + pX2 + pX3 + ... + pxn + ... 

In this case, the Newton polygon is a horizontal line (see figure 6.6). Notice 
that in this case 

limsup \IiPf = lim p-l/n = 1, 
n---.oo n---'oo 

so that the radius of convergence is 1 = pO. Checking the special case shows 
that if Ixl = 1, then the series does not converge, so that once again the 
region of convergence is an open ball, this time of radius 1. 

We clearly need an example where the region of convergence is a closed 
ball. To get one, lets define a function fen) = llog n J, where l·J is the 
"greatest integer" or "floor" function (in words, fen) is the greatest integer 
which is less than or equal to logn). Then consider the power series 

00 

1 + L p£(n) xn = 1 + X + X2 + pX3 + ... 
n=l 
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Figure 6.6: Newton polygon for 1 + pX + pX2 + pX3 + ... + pxn + ... 

The points we want to plot are 

(0,0), (1,0), (2,0), (3,1), ... , (n,f(n)), 

If we use the rotating line procedure, we can certainly rotate the line unbroken 
until it becomes horizontal (at which point it hits the first three points in our 
list). 

We claim the line can rotate no further. To see this, consider a line 
through the point (2,0) of some small positive slope C; this will have equation 
y = c(x - 2). We want to see that there are some points (n,f(n)) below this 
line; this translates to the assertion that we have fen) < c(n - 2) for some n. 
To see that this is indeed the case, notice that for n > 2 we have 

and remember that 

It follows that 

0< fen) < logn 
- n-2 - n-2' 

1. logn 
1m -- =0. 

n-HXl n - 2 

lim fen) = 0 
n-+oo n - 2 ' 

which means that given any c we can find an no such that f(no)j(no -2) < c. 
Rearranging, this says that f(no) < c(no - 2), which is what we wanted to 
prove: any line of positive slope has some (most, in fact) of our points below 
it. The conclusion is that the Newton polygon of our series is once again a 
horizontal line. It is easy to see that the radius of convergence of this series 
is 1, and that it does converge when Ixl = 1, so that in this case the region 
of convergence is the closed unit ball. 
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Figure 6.7: Newton polygon for 1 + 'Ep€(n)x n 

Problem 332 Modify this last series slightly by changing the first few coefficients: 

g(X) = 1 +!X + !X2 + I:l(n) Xn. 
P P n=3 

What does the Newton polygon now look like? 

The next lemma gives the connection (which we have been hinting at) 
between the slope of the final segment and the radius of convergence. 

Lemma 6.4.8 Let m be the sup of the slopes appearing in the Newton poly
gon of a series f(X) = 1 + a1X + a2X2 + ... (so that m is either a number 
or is +00). Then the radius of convergence of the series is pm (which we 
understand as +00 if m = +00). 

PROOF: Let Ixl = pb with b < m. Let's show directly that 

f(x) = 1 + alX + a2x2 + ... + anxn + ... 

converges. For that, we need to prove that laixil goes to zero as i -t 00. 
Since Ixl = pb, we have laixil = lailpbi; translating to valuations, this says 
vp(aixi) = vp(ai) - bi. To show laixil goes to zero is the same as to show 
its valuation goes to infinity, so we want to show that vp(ai) gets arbitrarily 
larger than bi as i grows. 

Now superpose the line y = bx on the Newton polygon of the series (see 
figure 6.8). Since the slope of the polygon eventually becomes larger than 
b, the polygon eventually passes and then gets farther and farther above the 



226 6 Analysis in Cp 

y=bx 

Figure 6.8: A Newton polygon and a line of slope b 

line y = bx. The points (i, vp ( ai)) are on or above the polygon, so it follows 
that 

as i -+ 00, 

and the series converges. 
If m = +00, we are done. If not, to show that pm is actually the radius 

of convergence, we need also to check that if Ixl = pb with b > m the series 
does not converge. We leave that to the reader (just use the same idea). D 

Problem 333 Complete the proof of the lemma. 

Of course, we would like to know the exact region of convergence: is it 
the open or the closed disk of radius pm? That turns out to be a bit harder 
to decide, so we'll content ourselves with a partial answer: 

Lemma 6.4.9 Let m be the sup of the slopes appearing in the Newton poly
gon of a series f(X) = 1 + a1X + a2X2 + .... Then: 

i) if the polygon ends in an infinite segment of slope m which contains 
infinitely many of the points (i, vp(ai)), then the region of convergence 
is the open ball of radius pm. 

ii) if the polygon contains an infinite number of segments of finite length, 
then the region of convergence is the open ball of radius pm. 

PROOF: Suppose, first, that the polygon ends in an infinite segment of slope 
m which contains an infinite number of the points (i, vp(ai)). This means 
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that there is a subsequence iI, i2, ... , i j , ... such that vp(ai j ) = k + mi j , 

where k is some fixed constant. In absolute value notation, this says 

laij I = p-kp-mij. 

To see that the region of convergence is the open disk of radius pm, what 
we need to show is that the series fails to converge if Ixl = pm. So suppose 
Ixl = pm. Then, along our subsequence, we would have 

Since this does not converge to zero, the series f(x) does not converge, and 
we are done. 

Now suppose the polygon has infinitely many line segments. Since the 
sup of all the slopes is m, all of the segments will have slopes less than m, 
and the slopes will form an increasing sequence converging to m. To handle 
this case, we can use an argument similar to the one in the previous lemma: 
the series will converge at a point x with Ixl = pm if we have 

lim lailpmi = 0, 
'---+00 

or, in valuation notation, if vp(ai) - mi goes to infinity as i goes to infinity. 
This would mean that the points in our polygon get arbitrarily far above the 
line y = mx. But that clearly cannot happen. 0 

Problem 334 Convince yourself that it "clearly cannot happen." 

Problem 335 Do the proofs we gave apply to the case where the polygon is just the 
negative y-axis (i.e., where the "rotating line" can't even leave its starting point? What 
conclusion should we get in that case? 

Problem 336 The reader will have noticed that we avoided saying what the exact 
region of convergence would be if the final segment does not contain infinitely many of 
the points (i,vp(ai». This case is complicated, as the two examples above show. Try 
to come up with a criterion to decide what happens in this case. 

Problem 337 Work out the Newton polygon and the region of convergence for each 
of the series 

i) 1 + pX + p4 X2 + p9 X 3 + ... + pn2 xn + ... 
) 

2 23 nl n ii 1 + XP + pXP + p XP + ... + p - XP + ... 
iii) 1 + X + 2X2 + 3X3 + ... + nxn + .. . 
iv) 1 + X + ~X2 + iX3 ... + ~xn + .. . 

Problem 338 (More examples.) Find the Newton polygons for the power series 
defining the p-adic logarithm (you'll need to divide by X first in order to get the 
zeroth coefficient to be 1), for the power series defining the exponential, and for the 
series for (1 + X)1!2 (you'll want to assume p =1= 2 for this one). 
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We now want to go on to obtain power series versions of the results 
describing how the Newton polygon carries information about the zeros of a 
power series. The crucial insight, here, will be to notice that the arguments 
we obtained for polynomials all work without change for power series: all 
we need to do is replace references to Proposition 6.2.3 to references to the 
Weierstrass Preparation Theorem (more precisely, to Theorem 6.2.10). 

Rather than simply send the reader back to check that our arguments 
do work, let's re-examine the discussion of the first segment of the Newton 
polygon. So let 

be a power series, and suppose that its Newton polygon has a first segment of 
length i and slope m. Since we are dealing with series, we need to be careful 
about what we want to assume about what goes on after this initial segment, 
so let's make the necessary assumptions specific. We assume that: 

i) The points (0,0) and (i, mi) are on the polygon, and the segment con
necting them is part of the polygon, and 

ii) either the polygon has a "break" at (i, mi) (Le., it continues with a 
different slope) or it continues with an infinite segment of slope m which 
does not contain any more of the points (j,vp(aj)). In the former case, 
we know that the series will converge on the closed ball of radius pm; 
in the latter case, we will assume that it does. 

The reason for these assumptions is really clear: we want to relate the 
segment of slope m to the zeros on the closed ball of radius pm. The assump
tions simply describe the two situations in which the series converges on that 
closed ball. 

One way to think about our special assumptions for the case when there 
is an infinite line of slope m is that they give a definition for the length of 
that segment. In other words, if the Newton polygon of a series ends in an 
infinite portion of slope m we will say the length of that portion is £ if £ 
is the distance between the x-coordinates of the first and last of the points 
(n, vp(an )) which are on the line, provided that the series converges on the 
closed ball of radius pm. (Recall that the convergence assumption implies 
that there is a last such point.) Otherwise, we may want to say that the 
length corresponding to slope m is zero. 

Once we have made these assumptions we have the following. First, f(X) 
converges on the closed ball of radius pm. Next all the points (j, vp(aj)) are 
on or above the line y = mx, and the ones where j > i are strictly above it. 
This translates to 

• lajl(pm)j :::; 1 for all j, 

• lail(pi)m = 1, and 

• lajl(pm)j < 1 if j > i. 
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This says that Ilf(X)lIpTn = 1 and that the maximum is last realized at degree 
i. In other words, it puts us exactly in the same position as in the case of poly
nomials: we can use the Weierstrass preparation theorem to conclude that 
there is a polynomial g(X) of degree i and a power series h(X), satisfying 
the inequality Ilh(X) - IllpTn < 1, such that f(X) = g(X)h(X). Further
more, we know that Ilf(X) - g(X)llpTn < 1, which implies that Ilg(X)llpTn = 
Ilf(X)llp'" = 1, so that g(X) is pure of slope m. Then, using what we know 
about Newton polygons of polynomials, it follows that the zeros of f(X) in 
the closed ball of radius pm coincide with those of g(X), which we already 
know are all of absolute value pm. So we've got the same result as for polyno
mials: if the first segment is of length i and slope m, then f(X) has exactly 
i zeros of absolute value pm, and no zeros of smaller absolute value. 

Thinking about what we just did suggests the following: 

Proposition 6.4.10 Let 

be a power series. Let ml, m2, ... , mk be the first k slopes of the Newton 
polygon of f(X), and assume that f(X) converges on the closed ball of radius 
c = pmk. Let N be the x-coordinate of the right endpoint of the k-th segment 
of the Newton polygon. Then there exist a polynomial g(X) of degree Nand 
a power series h(X) such that 

i) f(X) = g(X)h(X), 

ii) Ilf(X) - g(X)llc < 1, 

iii) h(X) converges on the closed ball of radius c, 

iv) Ilh(X) -ll1c < 1, and 

v) the Newton polygon of g(X) is equal to the portion of the Newton poly
gon of f(X) contained in the region 0 ::; x ::; N. 

PROOF: By induction on k: 
If k = 1, then we have the situation above, and we have already proved 

the existence of g(X) and h(X). 
Now assume the proposition is true for k - 1. Then we know there is 

a polynomial gl(X) which is a factor of f(X) and whose Newton polygon 
coincides with the first k - 1 segments of the polygon for f(X). We have 
f(X) = gl(X)h1(X), and we know hl(X) has no zeros on the closed ball of 
radius pmk - 1 • Let's go on, then, to consider the k-th segment. 

First of all, the fact that the k-th segment ends at x = N says that for 
any i > N the point (i,vp(ai)) lies above the line of slope mk through the 
point (N,vp(aN))' As in our analysis of "the second segment" of the Newton 
polygon of a polynomial, it is easy to see that this means that Ilf(X)llc = 
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IaN leN and that laNI~ > lailei for any i > N. Therefore, we can apply the 
Weierstrass preparation theorem to get a polynomial g(X). It is then easy to 
see that g(X) is divisible by gl (X), and that its Newton polygon coincides 
with the relevant portion of the Newton polygon of f(X). D 

Problem 339 Flesh out the details of the proof. The crucial point is that any zero 
of g(X) must be either a zero of gl(X), and we know about those, or a zero of hl(X) 
(and hence outside the ball of radius pmk_l). One needs to show that there are no 
zeros of absolute value less than pmk, and the rest falls into place. 

Corollary 6.4.11 Let 

f(X) = 1 + a1X + a2X2 + a3X3 + ... 

be a power series which converges on the closed ball of radius e = pm. Let 
m1, m2, ... , mk be the slopes of the Newton polygon of f(X) which are less 
than or equal to m, and let i 1 , i 2 , ... , ik be their lengths. Then, for each j, 
f(X) has i j zeros with absolute value pm;, and there are no other zeros in 
the closed ball of radius pm. 

PROOF: Clear, because we know this about polynomials, and the proposition 
says that the relevant part of the Newton polygon of f(X) is the Newton 
polygon of the polynomial g(X). Since g(X) is a factor of f(X) and the quo
tient heX) clearly has no zeros in the closed ball of radius pm, the conclusion 
follows. D 

Problem 340 Is the following version of the last proposition true? 

Possible Proposition Let 

be a power series which converges on the closed ball of radius c = pm. Let N be the 
integer defined by the conditions 

and 

Then there exist a polynomial g(X) of degree N and a power series heX) such that 

i) f(X) = g(X)h(X), 

ii) IIf(X) - g(X)llc < 1, 

iii) heX) converges on the closed ball of radius c, 

iv) Ilh(X) - 111c < 1, and 

v) the Newton polygon of g(X) is equal to the portion of the Newton polygon of 
f(X) contained in the region 0 ::; x ::; N. 

Furthermore, all the slopes in this portion of the Newton polygon of f(X) will be less 
than or equal to m. 
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6.5 Problems 

We've gone about as far as we want to go, but the reader may enjoy exploring 
further. Here are a few random problems involving p-adic analysis. No hints 
will be supplied for these (it would spoil the fun!) beyond remarking that 
some of them are very much harder than others ... 

Problem 341 In C, it is trivial to see that any analytic function (even any continuous 
function) is bounded on any closed ball, because closed balls in C are compact. In Cp, 
closed balls are no longer compact. Nevertheless, the boundedness result is still true: 
show that if f(X) is a power series converging on a closed ball of radius r, then f(X) 
is bounded on B(O, r). In fact, show that f(X) has a maximum (rather than just a 
sup) on B(O,r). 

Problem 342 Let f(X) be a power series converging on the closed ball of radius r. 
By the previous problem, f(X) is bounded. Show that 

l!!.ax If(x)1 = max If(x)l· 
xEB(O,r) Ixl=r 

We might want to read this as "the maximum occurs at the boundary," even though 
we know that the sphere is not the boundary of the closed ball. (This is the p-adic 
analogue of the "maximum modulus principle.") 

Problem 343 Suppose fn(X) is a family of power series satisfying: 

i) All of the fn(X) converge in the closed ball of radius p > 1 around the origin. 

ii) There exists a bound B such that Ilfn(X)llp::; B for all n. 

iii) There exists a power series f(X) such that the series fn(X) converge to f(X) 
with respect to the norm II 1\1 (or, what is the same, coefficient-by-coefficient). 

Show that f(X) converges in the open ball of radius p, and that the fn(X) converge 
to f(X) with respect to the norm II lie for any c < p. 

Problem 344 How close do two power series need to be in order to allow us to 
conclude that they have the same number of zeros in the closed ball of radius r around 
O? (This question is deliberately open-ended.) 

Problem 345 (From [Par84].) 

i) Let f(X) = 1- Xp-I, and define 

m(f, k) = sup{lf(x)1 : x E Qp, Ixl = pk}. 

Compute m(f, k) for each k E Z. Does the answer change if we let x E Cp 

instead? 

ii) Find a sequence of integers hI, h2 , ••• , hk , ••• such that if we set 

fk(X) = f(X) . (f(pX))hl . (f(p2 X))h2 . " (f(pk X))hk, 

then we have 



232 6 Analysis in Cp 

iii) Use this to construct an example of an entire function which is bounded on <Qp. 
What happens if we go to Cp? 

The point, of course, is that in C there are no non-constant bounded entire functions. 

Problem 346 Prove that 2P - l == 1 (mod p2) if and only if P divides the numerator 
of 

~ (-~)j. 
j=l J 

Problem 347 Prove that for every positive integer k, we have 

(The assertion is that the series converges, and that the sum is a rational number.) 

Problem 348 One approach to defining functions on the p-adic numbers which we 
really have not explored is making direct appeal to the p-adic expansion. Consider for 
example the function (stolen from [Mah73]) f : Zp --+ Zp which maps 

x = aD + alP + a2p2 + a3p3 + ... + anpn + ... 

to 
4 9 n 2 

f(x) = aD + alP + a2P + a3P + ... + anP + ... 
Is this function continuous? Is it differentiable? Can you extend it to <Qp? To Cp? 

Problem 349 (Also from [Mah73]. but originally due to Dieudonne; see [Die44].) In 
the same spirit as the previous problem, consider 9 : Zp --+ Zp which maps 

x = aD + alp + a2p2 + a3p3 + ... + anpn + ... 

to 
g(x) = a6 + aip + a~p2 + a~p3 + ... + a~pn + ... 

(Notice that this will not be a "p-adic expansion," because the coefficients are not 
necessarily between 0 and p - 1, but it clearly does converge, so that the definition 
makes sense.) Show that if p =1= 2 the function 9 is continuous but not differentiable 
on Zp. 

Problem 350 (This problem was proposed in the American Mathematical Monthly 
by Nicholas Strauss and Jeffrey Shallit. A solution by Don Zagier, using 3-adic methods, 
appeared in the January, 1992 issue.) 

If k is a positive integer, let v(k) = v3(k) be the 3-adic valuation. For each positive 
integer n, let 

n-l (2.) 
r(n) = ~ it 

Prove that 

• v(r(n));::: 2v(n), and 
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• v(r(n)) = v ( C: ) ) + 2v(n). 

Zagier's solution generalizes and extends this statement, and even formulates a conjec
ture at the end, so make sure to check it out after you've solved the problem. 

Problem 351 Suppose f is a continuous function on Zp. Consider the values 

• Explain the significance of the an. (Notice that they depend only on fen) for n a 
positive integer.) 

• Define a formal series 

reX) = ~an(~). 
Show that if m is a positive integer, then rem) = f(m). 

• Suppose that an -+ 0 as n -+ 00. Show that rex) converges uniformly for x E Zp, 
and is a continuous function of x. Conclude that in this case r = f· 

• Show that if f is continuous on Zp, then an -+ 0 as n -+ 00. (This is quite hard.) 

This problem gives an approach to the interpolation problem developed by Mahler in 
[Mah73]. If we know fen) for n a positive integer and we can show that the an tend 
to zero, then it gives a way of constructing an interpolating function. The last item 
above is quite difficult to prove; see Mahler's book for a detailed proof. 



A Hints and Comments on the 
Problems 

This appendix contains hints and comments of several kinds for the various 
problems set in the main text. Expect no complete solutions here; rather, 
the intention is to provide a jump-off point for a solution, and perhaps to 
discuss the implications of some of the problems. Some of the comments even 
suggest further problems! The hints and partial solutions become sketchier 
as we move toward the latter part of the book, in the expectation that the 
experience and ability of the reader will increase. As advertised, we do not 
give hints for the problems in the last section of Chapter 6. 

1 The formula for the sum of the geometric series says that 

2 3 4 1 1+a+a +a +a + ... =--
1-a 

provided that lal < 1. This can be used directly for the first expansion. For 
the third, write X - 1 = 1 + (X - 2) and use a = -(X - 2) in the geometric 
series. 

2 If the expansion is finite, it will certainly become a polynomial after we 
multiply by (X - a)m, where m is the biggest exponent appearing in a de
nominator. 

3 The sum is easy: 

(why can we assume the two series start at no 7). The product takes only a 
little more work: 

where the new coefficients are given by 

Ci = L ai, bi2 , 

i, +i2=i 
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which is a finite sum because the negative exponents only go back so far. 
Most of the field properties are easy to check; for the existence of inverses, 
one has to show that the equations for the coefficients of the product can be 
solved to find the coefficients of the inverse. 

4 Well, x and -x have to add up to zero, so the first digit has to be -x = 

(p - aD) + .... That way the sum of the two first digits is p, which gives a 
first digit of zero and a "carry." Now continue. 

5 Imitate the definitions for Laurent series, but watch out for carrying. 
That's tricky, so here are two suggestions of ways to make it easier. One 
idea, which is in fact the way Hensel did it originally, is to define an "irregular 
p-adic number" to be any expansion of the form 

with no restriction on the ai except that they be non-negative integers. It's 
then very easy to define the sum and product of irregular p-adic numbers 
by using the same ideas as with Laurent series. Then we need a theorem 
that says that any irregular p-adic number can be reduced to a regular p-adic 
number. The process would be something like this: beginning with aD, write 
out each coefficient in base p, and rearrange the series accordingly. What 
needs to be proved is that this is all well-defined. (A harder question is 
whether the process can actually be done in a finite amount of time!) 

Another option is to work like this: start with a p-adic number x, and 
factor out a power of p so that we have x = aD + alP + ... (aD may be equal 
to 0, of course). It's clear that it is enough to define the sum and product of 
such numbers (because we then factor the powers of p back in). Now, given 
such an x, let Xn be its truncation at pn, so that 

Now note that Xn is an integer, and we know how to add and multiply 
integers! Then define the sum and the product of two p-adic numbers by the 
rule 

and 

(Le., multiply the truncations, and truncate the result). Once you've checked 
that all these truncations of x+y and x·y "match," you can put them together 
to get a p-adic number. You need to check that this number is uniquely 
defined, i.e., that two p-adic numbers which have the same n-truncations for 
every n must be equal. This gives the operations. (You've still got to check 
the field properties!) 

Note: what is really going on here is that we want to deduce the oper
ations in IQp from operations in IQ (and even in Z); this is the lazy way to 
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do it, since it frees us from having to work out the carrying business explic
itly, but it forces a bit of mumbo-jumbo. The difficulty of proving the field 
properties when we use a formal definition of Qlp is one of the reasons for the 
more conceptual theory we'll develop in the next chapter. 

6 As the hint says, follow the usual proof: if an expansion is periodic, then 
multiplying by a power of p and subtracting gives a finite expansion, and we 
are done. For example, if 

x = a + bp + ap2 + bp3 + ... 

then 

so that 

and hence 
a+bp 

X=---
1- p2 

which is rational. For "eventually periodic," subtract off the non-periodic 
part first, then do the same. The converse (rationals have finite or periodic 
expansions) is also not hard: find an algorithm for computing the p-adic 
expansion of a rational number alb, and show that it is periodic. 

7 We really have two choices. If, say, 

we can represent it either as 

or in reverse order as 

In the first case, carrying works backward: add the leftmost terms, and carry 
to the right (of course, in base p). In the second, carrying works as usual 
(and, in fact, all the usual rules for addition and multiplication work), but 
numbers are infinitely long to the left. 

An additional problem: what happens if we consider exactly this setup, 
but in base 1O? Show that the resulting operations do work, but that one can 
find two non-zero (infinitely long) numbers whose product is zero, so that the 
resulting object is not a field. 
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8 First of all, any ideal J in qX] is principal, and will be maximal when its 
generator is irreducible. Since C is algebraically closed, the only irreducible 
polynomials are those of degree one, and we can always divide by the degree 
one coefficient (an invertible element of qX], so the ideal doesn't change) to 
get a polynomial of the form X - 0:. So, to a maximal ideal J we can attach 
the number 0:, and conversely. Part (ii) is even easier: just remember that 
f( 0:) = 0 if and only if f(X) is divisible by X - 0:. Part (iii) is also standard. 

For the rational numbers, just follow the hints as given. The order of the 
"pole at p" will be the largest power of p dividing the denominator of x. As to 
whether this is a reasonable thing to do, it turns out to be a very useful point 
of view in modern algebraic geometry, so I guess it must be "reasonable" ... It 
certainly does make the analogy a little bit tighter. 

9 This is standard business; see any basic text on number theory. To do it 
yourself, note that saying thatx2 == 25 (mod pn) is the same as saying that 
pn divides x2 - 25 = (x - 5) (x + 5). Then it's a matter of showing that it's not 
possible for both factors to be divisible by p. For p = 2, 5 there can be more 
than two roots. For example, X 2 == 25 (mod 25) has roots 0, 5, 10, 15, 20 
(mod 25). Describing the general behavior in the "bad" cases is harder than 
in the case p =J 2, 5. 

10 X 2 == 49 (mod 5n ) goes just like the example in the text. Similarly, 
X3 == 27 (mod 2n) goes smoothly (there is only one root). 

11 Just work it out. For every large enough n you should find four roots, 
only two of which "continue" on to the next n. 

12 Standard number theory business. For n = 1, you are looking at an 
equation of degree 2 in a field. Then show that solutions modulo pn always 
lift uniquely to solutions modulo pn+l. Alternatively, imitate problem 9. 

13 See the previous problem. This can be found in most books, too, but it's 
easy anyway. If we have a solution a (mod 7n) then a "lift" ii (mod 7n+l) 
has to be of the form ii = a + x7n , with x = 0 or 1 or. .. or 6. Now plug that 
into the equation, and show that one can always solve (uniquely) for x. 

14 One idea is to use truncations, as in 5 above: show that (xi)n = (2)n 
for every n, just by tracing through where we got Xl. 

15 If x = ao + al 5 + ... and x 2 = 2, then a6 == 2 (mod 5). 

16 For the negative statement, it's enough to check that X2 + 1 = 0 has no 
solutions modulo 7. For the positive statement, start from the fact that it 
does have solutions modulo 5, and then use the methods we've been playing 
with. 
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17 This is just a generic version of Problem 14; the "truncation" method 
will work. 

18 Read carefully over the last several problems, and write up your methods 
as a general result. 

19 As long as p -I- 2, what we have already done solves the problem: one 
can always find an m which is not a square in Q but is a quadratic residue 
modulo p, hence is a square in Qp. For p = 2, consider either cubes, or roots 
of polynomials of the form X 2 + X + m = o. 

20 Repeat the last problem in reverse. For any p -I- 2, there is an m which 
is not a quadratic residue modulo p, hence is not a square in Qp, which is 
therefore not algebraically closed. The same workaround as before handles 
p= 2. 

21 The usual proof works: multiply by p, and subtract. 

22 I certainly can't, but see Problem 10.10 in [ParS4] and its solution. 

23 Let I I be an absolute value on Ik. We have 101 = 0 by the definition. 
The equation 1 = 1 . 1 forces 111 = 111 . 111. Since 111 is a strictly positive real 
number, it follows that 111 = 1. Now take any element x E lk, x -I- O. Since 
lk is a finite field, there exists an integer q such that x q = x (we can take q 
to be equal to the number of elements in lk). Taking absolute values, we get 
Ixlq = Ixl; since Ixl is real and positive, this forces Ixl = 1. Thus, II must be 
trivial. 

24 If alb = eld, then ad = be. By unique prime factorization, the highest 
power of p that divides ad is just the sum of the highest powers dividing a 
and d; thus, vp(ad) = vp(a) + vp(d). Similarly, vp(be) = vp(b) + vp(e). Then, 
if ad = be, we have 

Now rearrange. 

25 It's just a matter offactoring: v5(400) = 2, v7(902) = 0, v3(123/4S) = 0, 
v5(lS0/3) = 1. Try a large number: what is v11(452, 29S)? 

26 First consider the case when x and yare both integers. Write x = pax' 
and y = pby' where both x' and y' are not divisible by p. Since we may 
interchange x and y if necessary, we can assume that a ::<:::; b. Then xy = 
pa+bx'y', which shows (i), and 

x + y = pax' + pby' = pa(x' + pb-ay,) 
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which shows that vp(x + y) ::::: a, and so proves (ii). This proves both state
ments when x and yare integers. To get it for fractions, let x = t/q, y = r/s. 
Then 

This proves part (i) for the general case. Part (ii) is similar (in other words, 
do it!). 

27 1/7, 1/7, 1, 343, respectively. (Notice that with respect to this absolute 
value, 3/686 is big, while 35 is small. .. ) 

28 There's nothing much to do here: just straight translation. Remember 
that the elements of K look like a/b where a and b are in A (and b =1= 0), and 
that a/b = e/d if and only if ad = be. Then follow your nose. 

29 First, v(l) = 0, so 0 is in the image. If a and (3 are in the image, then 
we must have a = v(x) and (3 = v(y) for some non-zero x, YEt. But then 
a + (3 = v(xy) and -a = v(l/x), so that we have a subgroup. In the case of 
the p-adic valuation, the value is always an integer by definition, so the value 
group is Z. 

30 This is easy to see, since we defined Ipn I = p-n, so that Ipn I -> 0 as 
n -> 00. The more a number is divisible by p, the smaller it is in the p-adic 
world. 

31 This is straightforward, since passing from the valuation properties of 
vp to the properties of the absolute values is just a matter of taking powers. 
The obvious conjecture is that it does not matter what value of e is used, 
in the sense that the resulting absolute values for varying e are "similar" 
enough that we might as well treat them as being the same. That's exactly 
what happens. Why e = p is a good choice is more subtle-see ahead for the 
Product Formula. 

32 Yes, it is enough to check for polynomials (extending from polynomials 
to rational functions is easy-just plug into the formulas). For polynomials, 
both equations are well-known, if we restate them in terms of the degree. 
(Notice that the sum of two polynomials of the same degree can have smaller 
degree, so that after changing signs the ::::: is indeed necessary.) 
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33 A rational function fig will be small with respect to 1100 when voo(f Ig) 
is big, hence when the degree of 9 is much bigger than the degree of f. Hence, 
polynomials are never small. In fact, if f is a polynomial, then deg(f) :::::: 0 
gives Ifloo :::::: 1. 

34 Boring but easy. Just run through the definition of the p-adic absolute 
value and check that everything works. For concreteness, play with the case 
where F = IR and p(t) = 1 + t 2 , or the case F = iC, p(t) = t - 4. 

35 In every case, it turns out to be the trivial absolute value. For I 100, just 
notice that any non-zero constant has degree zero, and hence absolute value 
1. For the p(t)-adic absolute values, notice that the constants in F[t] are not 
divisible by any irreducible polynomial. 

36 Every polynomial of degree n with coefficients in iC has n roots, so 
that we can always write it as a product of linear terms. Hence, the only 
irreducible polynomials are the ones of degree one, p(t) = t-A. The p(t)-adic 
valuation of a polynomial f(t) just measures the multiplicity of A as a root 
of f(t). We are very close indeed to Hensel's original idea. 

37 This is very hard, and, as advertised, depends on the choice of the field 
F. If an archimedean absolute value on F(t) can be found, its restriction to 
the subfield of constants F will have to be an absolute value on F, and it will 
have to be archimedean (if you can't see why, wait till the next section). So 
it can't be done if (a) there are no archimedean absolute values on F, nor 
if (b) we require that the restriction to F be the (non-archimedean) trivial 
absolute value. 

Here's the sneaky bit: take F = Q, and choose a transcendental number, 
say 7r. Since 7r is not a root of any polynomial over Q, the rings Q[7r] and 
Q[t] are isomorphic. (Map Q[t] -) Q[7r] by t f--+ 7r; this is obviously onto, 
and what can possibly be in the kernel?) It follows that the fields Q(7r) and 
Q(t) are isomorphic. Now, Q(7r) is contained in IR, so we can restrict the 
archimedean absolute value on IR to Q(7r), and then pull it back to Q(t) via 
the isomorphism to get an archimedean absolute value! (We know it'll be 
archimedean by computing 121.) 

I said it was sneaky. 

38 Consider a polynomial f(t) = antn + ... + alt + ao, with an =f. 0, so that 
its degree is really n. We have voo(f) = -n, by the definition above. Now, 
as a polynomial in lit, we have 

n ( (l)n-l (l)n) f(t) = t an + ... + al t + ao t 

an + ... + al Cf )n-l + aoO- )n 

(i)n 
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so that vI(f) = -n (the numerator above is clearly not divisible by lit). 

39 The construction of the Jr-adic valuation V7r should be routine by now. 
Some hints: the "good" value for c will depend on Jr; if Jr divides a rational 
prime p, then we want to choose either p or p2 (can you come up with a 
reason?). For the last question, reading the three cases above, we'll get that 
V7r(p) will equal zero for all primes except the (unique) one that is divisible 
by Jr, in which case it will always be equal to one, except if p = 2. (Now that 
is a convoluted sentence!) What is vl+i(2)? If Jr = X + iy and 7f = x - iy are 
two primes as in case (iii), what is the relation between V 7r and V:;r? 

40 This is all rather easy: the point is that Ixl is always a positive real 
number. For (ii), just note that if )..n = 1 and)" is a positive real number, 
then).. = 1. Statement (iii) is just (ii) with n = 2; statement (iv) then 
follows from I - xl = 1- 11· Ixl. Finally, in a finite field with q elements, we 
have xq- 1 = 1 whenever x =I=- 0, and applying (ii) shows that any absolute 
value must then be trivial. 

41 Suppose sup{lnl : nEil} = C, and C > 1. Then there must exist an 
integer m whose absolute value is bigger than 1. But them Imkl = Imlk gets 
arbitrarily large as k grows, so that C cannot be finite. It follows that C :s: 1, 
and since 111 = 1, this means C = 1, so that II is non-archimedean. 

42 This is straight translation from the properties of absolute values. 

43 For (i), notice that 

d(x + y,xo + Yo) = I(x + y) - (Xo + yo)1 = I(x - Xo) + (y - yo)1 

and use the triangle inequality. For (ii), notice that 

xy - XoYo = x(y - Yo) + Yo(x - xo). 

For (iii), use 
1 1 Xo -x 
x Xo xXo 

You should work these out carefully if you find them troublesome. 

44 The hints in the text should be enough to suggest the proof. For the 
second statement, notice that for any two positive real numbers a and j3 we 
have a + j3 2:: max{ a, j3}. 

45 We have 

1 
x-y =--

15 
4 

Y -z =--
15 

5 1 x-z= -- = -_. 
15 3' 

the first two sides have length 5, the third has length 1. 
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46 Open balls first. If x E B(a, r), then let 8 = Ix - al < r. We need to 
show that a small enough ball around x is completely contained in B(a, r). 
Consider the ball around x with radius c = r - 8. If a point y belongs to this 
ball, then Iy - xl < c. But if that is the case, then 

Iy - al :::; Iy - xl + Ix - al < c + 8 = r - 8 + 8 = r, 

so that y E B(a, r). Make a picture if this is not clear! 
Do something similar for closed balls (if you made a picture, this should 

be easy). 

47 The missing parts are easily done, by imitating the parts that were 
done. We need the ri=-O condition because a closed ball of radius 0 is a 
point, which is not an open set unless the absolute value is trivial. (Why 
not?) By contrast, open balls of radius zero are just empty sets, which are 
always both closed and open anyway. (Why?) 

48 B(O, 1) is the set of fractions alb such that lalbl p :::; 1, which means that 
vp(alb) ;::: O. This will happen when, after putting the fractions into lowest 
terms, the denominator is not divisible by p. So the closed unit ball around 
o consists of the fractions alb where p does not divide b. 

B(3,1) is the set of fractions alb such that alb - 3 has absolute value 
less than one. Reasoning as before, this means that the denominator is not 
divisible by p, but the numerator is. If we assume that alb is in lowest terms 
(so that a and b have no common factors, then 

a 3 _ a - 3b 
b- --b-

will also be in lowest terms (check!), so the conditions are that p does not 
divide b but does divide a - 3b. To find out what integers satisfy this con
dition we set b = 1; the first condition is automatically true, and the second 
condition says that p divides a - 3, Le., that a == 3 (mod p). 

49 Well, as we found out in Problem 48, the closed unit ball is the set of 
all fractions alb where p does not divide b. Look at the numbers 

a, a - b, a - 2b, a - 3b, a-(p-l)b. 

It is easy to see that exactly one of these numbers will be divisible by p (the 
easiest way to see it is to note that these are p integers, and no two of them 
can be congruent modulo p, because if p divides the difference of any two, 
then it divides b, which it doesn't). But if a - ib is divisible by p, then 

I ~ - i I = I a ~ ib I < 1, 
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so that alb is in the open ball B(i, 1) of center i and radius 1. This proves 
the equality. The disjointness amounts to the statement that only one of the 
numbers listed can be divisible by p. 

50 The point is that the 5-adic absolute value can only take values of the 
form 5n , where n is an integer. So saying that a 5-adic absolute value is less 
than one, less than 1/2, or less than or equal to 1/5 all amount to the same 
thing. 

51 To see that the sphere is closed, notice that it is the intersection of the 
closed unit ball with the complement of the open unit ball. These sets are 
both closed, and so their intersection is closed. (Notice that this part doesn't 
depend on the absolute value being non-archimedean.) 

To see that the sphere is also open, take x in the sphere, so that Ix-al = r, 
and choose c < r. Then if Ix - yl < c we must have Iy - al = r because all 
triangles are isosceles. Hence, the open ball around x of radius c is completely 
contained in the sphere. (Notice that this part does.) 

For the sphere to be the boundary of the open ball, any open ball centered 
on a point on the sphere should intersect the open ball. But that can't happen 
if the sphere is an open set. 

52 To go one way, we need to take A = S nUl and B = S n U2 . To 
go the other, we need to find two open sets; we might try to let U1 be the 
complement of the closed set B, and U2 be the complement of the closed set 
::4, but these won't be disjoint. Instead, note that the distance from a point 
in A to the points in B has a lower bound, use this to cover A with a huge 
number of little open balls, and take U1 to be their union; do the same for 
U2. By the way, requiring U1 and U2 to be disjoint is not really necessary, 
and is a mistake if we're working in a general topological space. See a book 
on general topology for details. 

53 The intervals. 

54 The ball is both a closed and open set. Take a smaller ball inside it. It is 
also closed and open, so that the complement of the smaller ball in the bigger 
ball is a closed and open set. This gives us the decomposition we want. 

55 Suppose a set S contains both x and another point y; we will show S 
cannot be connected. To simplify the notation, let r = Ix - yl. To show S is 
disconnected, we need to find the sets U1 and U2 in the definition. Remember 
that balls are clopen. For U1 we take the open ball of radius r /2 around x; 
this contains x and not y. For U2 we take the complement of U1 , which is 
open because U1 is closed; this contains y but not x. The union of U1 and 
U2 is the whole space, so this does what we want. 
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56 First of all, the trivial case: the empty set and all of Q are both clopen 
sets. But there are other clopen sets in Q. For example, consider the set of 
rational numbers alb whose square is less than two: 

s = {~ . (~)2 < 2} = {~ . -J2 < ~ < J2} b· b b . b . 

This is clearly open, but it is also closed (can you check that?). It's not hard 
to see that this means that Q is totally disconnected also with respect to the 
usual absolute value. 

On the other hand, there are no nontrivial clop en sets in JR, and JR is 
connected; prove it. 

57 We showed in a previous problem that the closed unit ball around 0 was 
the disjoint union of p - 1 open balls of radius 1. Scaling and translating, 
we see that the same will be true for any closed ball. For open balls, we can 
use a dirty trick. Again, look at the open ball of radius 1 around 0; for the 
reasons explained in Problem 50, this is equal to the closed ball of radius l/p 
around 0; by the argument above, this is the disjoint union of open balls! 
This proves our claim for the open ball of radius 1 around 0, but again we 
can scale and translate to get the general result. 

The fact that we had to use the special property that the values of the 
p-adic absolute value are all of the form pn with n an integer should be a 
hint that this will not work in general. Nevertheless, it's pretty hard (at this 
point) to come up with a counter-example (the algebraic closure of Q will 
work, but defining an absolute value on that field is a non-trivial task). 

58 (Very much a set of hints rather than a solution.) To show that (') is a 
subring, we need to show that it contains 0 and 1 and is closed under addition, 
multiplication, and change of sign. This is all easy, and you only need to use 
the non-archimedean property to show closure under addition. (Do it.) To 
show that If) is an ideal, we need to check that it is closed under addition 
( easy), contains 0 (clear), and that if x E (') and y Elf), then xy Elf). The 
two assumptions say that Ixl :::; 1 and Iyl < 1; since IxYI = Ixllyl, it follows 
that IxYI < 1, Le., xy E If). If x E (') but x rf.1f), then we must have Ixl = 1. It 
then follows that II/xl = 1, so that l/x E ('), which means that x is invertible 
in ('). Finally, any ideal strictly containing If) would have, by what we have 
just shown, to contain an invertible element, and would therefore be all of ('); 
this shows If) is maximal. 

59 The jazzy proof: we have an injective homomorphism Z ~ Z(p), and it 
maps pZ into pZ(p) (do you see that?). By the usual hocus-pocus, this gives 
an injective map 
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(it's injective because an integer a maps to zero only if a/I E pZ(p), which 
happens only if pia). To see that it is also onto, we use an argument involving 
congruences: if p f b, then there exists an integer bI such that bb I == 1 
(mod p). Then for any alb in Z(p), the integer ab I maps to the class of alb 
in Z(p)/pZ(p). 

The non-jazzy proof is not all that different. 

60 This is very similar to the calculations for '01, and we leave it for the 
reader to puzzle over at leisure. Hints: the valuation rings all look like sets 
of rational functions with restrictions on the numerators and denominators, 
and the residue fields are often (but not always) equal to F itself. 

61 The open ball is the coset a + liJ of the ideal liJ in <9. (Are other balls 
also cosets?) Problem 49 gets translated to the statement that the residue 
field is finite. 

62 Yes it is always the case in the examples we considered, but no, it is 
not always true. This question is really closely related to the fact that in all 
our examples we have a very restricted range of values for our absolute value 
function. 

63 Checking that v(x) is a valuation is an easy exercise in logs and inequal
ities. For the other three statements: 

i) If vp(x) = n, then Ixl = p-n, so that v(x) = nlogp. Hence v and vp 
differ by multiplication by a constant, logp. The image of v is logp . Z, i.e., 
the real numbers which are integral multiples of logp. (It's easy to see that 
this is a subgroup of JR., and that it is isomorphic to Z.) 

ii) If the value group is discrete, look at the element x with smallest 
nonzero v(x). It's not too hard to prove that it must be a generator of liJ. 
Conversely, if liJ is principal check that the valuation of a generator must be 
the minimal nonzero element of the value group, which must then be discrete. 

iii) This takes some work. We showed in (ii) that in this case liJ is a 
principal ideal, but we still need to show that every other ideal is too. See 
[Ser74] for a detailed discussion of what hypotheses are necessary and for the 
proofs. 

64 As the hint suggests, choose any Xo E Ik, Xo =I=- 0, such that IxolI < l. 
Then (ii) says that Ixol2 is also less than 1, so that there exists a positive 
real number Lt such that IxolI = Ixol~. (Just take logs on both sides to find 
Lt; why is it important to choose Ixo 11 < I? What if no such Xo exists?) This 
gives us our Lt. 

Now choose any other x E Ik, x =I=- 0. If IxlI = IxolI, then we must also 
have Ixl2 = Ixob because otherwise either x/xo or xo/x would have 112 less 
than 1 and (ii) would be violated. So in this case the equation IxlI = Ixl~ 
holds. Also, if Ixii = 1, then we must have (by (ii) applied to either x or l/x) 
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that Ixl2 = 1 also, so that the equation Ixl1 = Ixl~ holds trivially. Finally, 
notice that the equality for some x implies the equality for any power of that 
x; in particular, we know that IxSI1 = IxSI~ for any integer n. 

So we may assume that Ixli -I- 1 and Ix Ii -I- Ixoli for i = 1, 2. As before, 
choose {3 such that Ixl1 = Ixlg; again, this means that we also have Ixn l1 = 
Ixnlg for all integers n. In particular, we can assume that Ixl1 < 1 (otherwise 
replace it with l/x), which of course also implies that Ixl2 < 1. 

What we want to do is show that a and {3 must be equal. Since we want 
to use (ii), the natural way to proceed is to show that if they are not equal, 
then we can manufacture an element that has I 11 < 1 but I 12 > 1, which 
would contradict (ii). The reader should fiddle with this idea for a while to 
convince himself that it is not very easy to carry it through. Faced with that, 
we have no choice but to take a more roundabout and more devious route. 

Let nand m be any two positive integers. Then we have 

Ix If < Ixoli <===} I x: I < 1 <===} I x: I < 1 <===} Ixl2' < Ixol2"· 
xo 1 xo 2 

Taking logs of the first and last equations, we get 

which we can write as 

This says that the set of fractions which is smaller than the first quotient 
of logs is exactly the same as the set of fractions which is smaller than the 
other; since there are fractions as close as we like to any real number, this 
means that the two numbers must be equal (otherwise, some fraction will be 
bigger than one but smaller than the other). Thus, we get 

loglxoll log Ixol2 
log Ixl1 log Ixl2 

, 

and therefore 
loglxol1 log Ixl1 

log Ixol2 log Ix12· 

But plugging in Ixol1 = Ixol~ shows that the first quotient equals a, and 
similarly the second quotient equals {3. This shows a = {3, and we are finally 
done! 

65 This only requires a straightforward reading of the definition. 

66 The point is that saying Ixl = 1 is equivalent to saying that both Ixl and 
II/xl are::; 1. Then do the obvious thing. 
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67 According to the Lemma, equivalent absolute values differ by raising to a 
positive power. Since both 1 a = 1 and oa = 0 for any a, anything equivalent 
to the trivial absolute value is itself trivial. We would only need to change 
the definition of "nontrivial" if there were more absolute values that were 
equivalent to the trivial one. Since there aren't, we can let "trivial" mean 
"trivial" and have done with it. 

68 Easy: Iplp < 1 but Iplq = 1 whenever p and q are two different primes. 

69 Let A be the image of Z in Ik:, i.e., the elements of Ik: which are integral 
multiples of 1. We showed that I I was non-archimedean if and only if we had 
lal ::; 1 for all a E A. Now use Problem 66. 

70 First of all, if n = 1 we're OK, since 111 = 1 = 1a . If 1 < n < no, the 
estimate Inl ::; ena would still be true, since in this case Inl = 1 (remember 
that we chose no to be the smallest integer with absolute value more than 
1). Furthermore, when we go on consider nN we will certainly get to integers 
bigger than no, so the proof doesn't need to consider this case separately. 

71 If we assume that the real numbers are known, this is easy: just take a 
sequence of rational numbers like 

1, 1.4, 1.41, 1.414, 1.4142, etc. 

which get closer and closer to J2. This is clearly Cauchy and has no limit in 
Q. 

If we want to do this within Q, we just need to be a bit more careful. For 
example, we might use Newton's method to generate a sequence of rational 
numbers which approximate J2. 

72 Let Ik: = JR, and let I I be the usual absolute value. The famous example 
is 

111 
Xn = 1 + 2" + "3 + ... + ;;:. 

For this sequence, we have xn+l - Xn = 1/ (n + 1), which clearly tends to zero 
as n ----; 00. The sequence is increasing, so that if it has a limit its terms must 
all be bounded (they are all less than any number which is bigger than the 
limit). However, a standard argument that the reader will very likely have 
seen in her calculus class shows that X2k :2: (k + 2)/2, so that the sequence 
cannot be bounded, hence cannot have a limit. 

The infinite sum 
111 1+-+-+···+-+ ... 
2 3 n 

is called the harmonic series, and it is a staple of calculus courses because 
it shows that a series can get infinitely large even though its summands get 
closer and closer to zero. 
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73 The first one is clear: if a field contains Q and is complete, it must 
contain the limit of any Cauchy sequence made up of elements of Q. For 
the second, you need to show that any real number can be arbitrarily well 
approximated by rational numbers. Can you prove that? 

74 No, because Q is already complete with respect to the trivial absolute 
value: since the only possible absolute values are ° and 1, a sequence will be 
Cauchy only if IXm - Xn I = ° for all large enough m and n. But this means 
that Xm = Xn for all large enough m and n, and of course any such sequence 
converges (because it just stops). 

75 Use the approach we described to construct a sequence tending to a 
cube root of 3. The main point is to show that one can always get a solution 
modulo 2n +1 from a solution modulo 2n , and this is done just as in the other 
case. 

76 The sum is easy, since 

(Xn + Yn) - (xm + Ym) = (xn - xm) + (Yn - Ym). 

For the product, use the identity 

xnYn - XmYm = xn(Yn - Ym) + Ym(xn - x m), 

plus the fact that Xn and Ym cannot get arbitrarily big as nand m grow. 

77 The zero element is the sequence 

0, 0, 0, 0, 0, 0, ... 

The unit element is 
1, 1, 1, 1, 1, 1, ... 

A sequence (xn) is invertible exactly when the Xn are bounded away from 
zero (i.e., there exists a bound b such that IXnl > b for all n; in particular 
Xn f:. ° for all n). 

We need to know they are bounded away from ° rather than simply non
zero, because otherwise the "inverse sequence" might not be Cauchy! (Make 
sure you understand this one: what's an example of a Cauchy sequence of 
non-zero rational numbers Xn such that the sequence given by Yn = 1/ Xn is 
not Cauchy?) On the other hand, things are less bad than they seem: you 
should be able to show that if a Cauchy sequence does not tend to zero, then 
it is bounded away from zero. 

78 Here's an example: sequence one is 

0, p, 0, p2, 0, p3, 0, p4, ... 

and sequence two is 
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79 In any Cauchy sequence (xn), the terms Xn are bounded (if this is not 
immediately clear, you should write down a proof). Hence, if Yn ----t 0, then 
also XnYn ----t 0, which is what we want to prove. 

80 As it says, just follow the proof through. The argument you used in 
Problem 77 to show that the inverse of an invertible Cauchy sequence with 
terms bounded away from zero is itself a Cauchy sequence will work for 
"almost inverses" too. 

81 If A = 0, then (xn) EN, so that Xn ----t 0, so that IXnlp ----t 0, so IAlp = 0, 
which is only reasonable. On the other hand, if A I- 0, then Lemma 3.2.10 
says that the sequence IXn Ip is constant for sufficiently large n, which means 
it certainly has a limit. 

82 If the difference tends to zero, the absolute value of the difference tends 
to zero, so that the difference of the absolute values tends to zero. 

83 Once you do remember, there is nothing left to prove. 

84 Problem 83 handled one part. What remains to be shown are the mul
tiplicativity and the non-archimedean property. Both are easy: just write 
down the known properties of I Ip for the terms of any sequence, and take 
the limit. For example, if A is represented by (xn) and JL is represented by 
(Yn), then the product AJL is represented by (xnYn). Now, for each n we 
have IXnYnip = IXnlplYnlp. taking the limit gives IAJLlp = IAlpIJLIp- Something 
similar works for the addition. 

85 Yes, this is essentially obvious. 

86 Lemma 3.2.10 says it all. 

87 < becomes::; because it's perfectly possible for a sequence to tend to a 
certain value while remaining consistently smaller than that value. We need 
to decrease c slightly to guarantee that Y doesn't end up in the closed ball of 
radius c. 

88 Follow the steps! This is mostly a question of keeping your cool when 
dealing with sequences of sequences. 

89 This shouldn't be too hard, given all the hints. The point of number one 
is that if two continuous functions agree on a dense set, then they are equal. 
Number two is quite direct, and number three follows from the fact that, as 
suggested, the absolute value function is continuous, because 

Ilxl - lyll ::; Ix - YI· 
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(Can you prove this? It holds for an arbitrary absolute value. Do you see 
why it says that the absolute value is continuous?) 

90 For something to be determined "really uniquely," it must not only be 
unique up to isomorphism, but up to unique isomorphism. An example 
is the process of forming an algebraic closure of a field. Given a field Ik, 
its algebraic closure is unique up to isomorphism, but has a great many 
automorphisms, so that given two algebraic closures there are a great many 
different isomorphisms between them. What this means is that the algebraic 
closure is not really canonically determined. (One should always speak of an 
algebraic closure, but one can speak of the completion.) 

Another example of the same thing happens in linear algebra: all the 
vector spaces of dimension n are isomorphic, but it is still unwise to simply 
identify them all, because given any two there are many different ways to 
establish the isomorphism, and why should we favor anyone of them over 
the others? 

91 This is easy: since Zp is the closed unit ball with center 0, it is an 
open set containing 0, hence a neighborhood of o. Since multiplication by p 
sends open sets to open sets, this means that for every n the set pnzp is a 
neighborhood of zero. That 

is clear from the first statement in the Corollary; to see that they are a 
fundamental system of neighborhoods we need to show that any open set 
containing zero contains a pnzp, and this is clear (because any open ball 
containing 0 contains a closed ball of smaller radius, which will be one of the 
pnzp). 

92 There are lots, of course; an example would be the family consisting 
of the open intervals (-lin, lin) plus the open intervals (-n, n), where n 
ranges through the positive integers. 

93 The proof we sketched for Problem 91 pretty much shows this already. 

94 This has all been done, albeit in different terms. Multiplication by pn is 
injective because Zp is contained in Qlp, which is a field. The existence of the 
map from Zp to Zjpnz is part of what was proved in Proposition 3.3.3; that 
it is surjective is obvious because Zp contains Z. To check that the kernel is 
correct, we need to look once again at the proof of the Proposition, which 
shows this pretty clearly. 
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95 This is pretty silly if we just remember that 7l.,p is contained in Qp, which 
1 

is a field: if nx = 0 in 7l.,p, then nx = 0 in Qp, and then n = nx- = O. To 
x 

do it without referring to Qp seems a bit perverse, but it follows from two 
facts: first, if p f n, then n is invertible in 7l.,p; second, multiplication by pn is 
injective. 

96 You'll probably need to look some of these up. Just some comments: (i) 
is standard but pretty hard; (ii) just uses the fact that the inverse image of 
an open set by a continuous function is again open; (iii) takes some thought 
to come up with a way to use the condition about covering sets; for (iv), to 
show that any compact set will have these two properties is not too hard (use 
(iii) for the first one), but the converse takes some work. 

97 A closed interval is compact, and is a neighborhood of any of its interior 
points, so it's enough to note that any point is in the interior of some closed 
interval; e.g., x E [x -l,x + 1]. 

98 The hint pretty much proves everything. 

99 Because any ball in Qp is equal to a ball of radius pn, and any ball in 
7l.,p with radius greater than or equal to one will simply be all of 7l.,p. 

100 To reproduce the argument we gave for 7l.,p, we only need to check that 
the other quotients (9/\fJn are also finite, since (9 is always the closed unit 
ball in Ik. To see this, we look at the obvious map (9/\fJn ----4 (9/\fJ; its 
kernel is \fJn /\fJ. If we show the kernel is finite, we will be done (because the 
assumption is that the image is too). Can you do that? 

The "do we really need" questions are both pretty hard. (The answer is 
likely to be "yes" in both cases.) 

101 If Xn E 7l., for all n, then Ixnl :::; 1 for all n. Now if Xn ----7 x, then there 
is some n such that Ix - Xn I < 1. But then 

so that x E 7l.,p. 

102 This is not too hard, but does rely on the reader being comfortable 
with topology and with infinite products. That the map is an injective ho
momorphism is not too hard to show, because any element in 7l.,p is the limit 
of its associated coherent sequence. For details on how to construct 7l.,p from 
this point of view, see chapter 2 of [Ser73]. 
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103 Given such a family of maps in : R -----; An, and given r E R, the 
sequence (f n (r)) is a coherent sequence. By the previous problem, we can 
find an element of tlp corresponding to this sequence. Taking this as the 
image of r gives a map R -----; tlp which does what we want. 

104 If you are comfortable with the algebraic concepts involved, this should 
not be very hard. The point is that any integer between 0 and pn - 1 is 
congruent to a unique element of the form ao + alP + ... + an_Ipn- 1 with 
the ai chosen from our set X of coset representatives. This can be proved, 
for example, by induction on n. Once that is known, just repeat the proof in 
the text. 

105 We need x = ao + alP + ... with ao =I- O. 

106 7lx = {±1}, F[tJx = FX, and q[tW is all power series with nonzero 
initial term, Le., of the form ao + alt + ... with ao =I- O. 

107 Let Xn be a sequence of elements of 7lp . We want to pick out a subse
quence that converges. To do this, use the following iterative procedure: 

(i) There are only p possible choices for the zeroth coefficient in the p-adic 
expansion of the Xn- Hence there must be infinitely many Xn all of which 
have the same initial term ao. Choose nl such that x n1 is one of these. 

(ii) For each of the infinitely many Xn whose p-adic expansions start with 
ao, there are p choices for the first coefficient. Hence there must be infinitely 
many Xn all of whose p-adic expansions start with ao + alP. Choose nl so 
that x n1 is one of these. 

Now keep going. Why does this procedure fail for sequences in Qp? 

108 This can be done in many ways. Notice that, however we do it, the 
Taylor expansion is finite, so we don't need to worry about convergence ques
tions. 

Here's the jazziest proof I can think of: the field generated by Q and the 
coefficients of F(X) can be embedded in C, and the theorem is clearly true 
for polynomials with complex coefficients. (Talk about overkill ... ) 

109 Just follow what was done to go from al to a2. 

110 In Newton's method, we start with an initial guess Xo and then compute 
what we hope are better and better approximations using the formula 

In our setup, we found an+l by setting it equal to an + pbn , and computed 
bn by setting F(an) = px and bn = -x(F'(an))-I. Plugging everything in 
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gives 
F(an) ( '( ))-1 F(an ) 

a n+1 = an - p-p-- F an = an - F'(an) 

In other words, it is exactly the same formula! 
There are differences, of course. First of all, we checked that this proce

dure never leaves Zp (in other words, the division in the formula can always 
be performed in Zp). Next, we checked that in the p-adic case the method 
always works, provided only that F'(a1) ¢. a (mod p). This is far from true 
in the classical case. Finally, we get an extra bit of information, a == a1 
(mod p), which can be read as saying that the root we get is not too far from 
the initial estimate (this too is not true in the classical case). 

111 If F'(a1) is divisible by p, it is not invertible in Zp, so that we can't 
pick the b1 in the computation, and the proof falls through. Indeed, the 
polynomial X 2 - 3 has roots modulo 2 but no roots in i(b. 

112 See [Cas86] for a full proof. The method is very similar to the one 
we used. An example where the stronger result is necessary is the equation 
X 2 - 17, which does have roots in ({]2. 

113 If a1 exists, then its image in ZlpZ is an element of order dividing m in 
the cyclic group (ZlpZ) x of order p-1. It follows that gcd(m,p-1) i= 1 unless 
a1 == 1 (mod p). Furthermore, the least exponent m with this property must 
be a divisor of the gcd, and hence must be a divisor of p - 1. Conversely, in 
a cyclic group of order p - 1 there must certainly be elements of any order 
dividing p - 1 (if x is a generator, x(p-1)/d is of order d). 

114 It's basically straight Hensel's lemma. For the two loose ends, note that 
if there is an m-th root of unity, then it must be in Zp (because its absolute 
value must equal one); furthermore, it will be congruent to an integer a1 

with ar == 1 (mod p) (just take the first term in its p-adic expansion). Now 
use the previous problem and the uniqueness part of Hensel's Lemma. 

115 The roots of unity are exactly the elements of Z; that satisfy xm = 1 
for some power m. It is easy to see that the set of such elements in any abelian 
group always forms a subgroup. To see that there are p - 1 roots, note that 
the numbers 1, 2, 3, ... , p - 1 are all solutions of X p - 1 == 1 (mod p), and 
are all incongruent modulo p. Applying Hensel's lemma gives p - 1 roots 
which are all incongruent modulo p, and in particular are all different. Since 
a polynomial can only have as many roots as its degree, these must be all 
the roots. Since, by the previous problem, any root of unity must be a root 
of this polynomial, these must be all the roots of unity in ({]p. Finally, any 
finite subgroup of any field is cyclic. (To see that the group of roots of unity 
is cyclic in a more direct way, apply the reasoning above to all polynomials 
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Xd -1 as d ranges through the divisors of p - 1, and count to show that some 
(p - 1 )-st root of unity must exist which is not a root of any of these. Such 
a root of unity will be a generator.) 

116 The first assertion is a straight application of the stronger form of 
Hensel's lemma. For the second, write the 2-adic unit in the form 1 + 2x, 
and square. The conclusion follows by considering 7L/87L 

117 Polynomials that are quite different in 7Lp[X], such as X + 1 and X + 
(p + 1), are identical modulo p, so being relatively prime modulo p is a more 
restrictive condition than being so over 7Lp . 

118 We use the notation in the proof, and focus mostly on the question 
about the final twist. Since gl (X) = X and h1 (X) = 1, the obvious solution 
for a(X)gl(X) + b(X)h1(X) == 1 (mod p) is a(X) = 0, b(X) = 1, which 
yields ,heX) = 0 and f1(X) = X 2 + 1. But now if we simply set g2(X) = 

gl(X) + pf1(X) and h2(X) = h1(X) + PS1(X), we end up with g2(X) = 
2X2 + X + 2 and h2(X) = 1, which yields a factorization, all right, but a 
rather unsurprising one! 

If we do it right, we get T1 (X) = 1 (the remainder of dividing X 2 + 1 by 
X) and Sl(X) = X, which gives g2(X) = X + 2 and h2(X) = 1 + 2X, and 
all is well. The reader should go through at least one more iteration herself. 

119 Just follow what we did in our proof. 

120 If you did the previous problem, this should be easy. 

121 For p i=- 2, 17 one can do this by a straight application of Hensel's 
lemma, as follows: if neither 2 nor 17 are squares modulo p, then their 
product must be a square modulo p; then use Hensel's lemma. (To see 
why the product of two quadratic non-residues must be a square modulo p, 
remember that (7L/p7L)X is cyclic, so that being a square means being an even 
power of the generator; the product of two odd powers of the generator must 
be an even power of the generator!) 

For p = 2, note that 17 is a square in Ql2. For p = 17, note that 62 == 2 
(mod 17), so that (Hensel's lemma!) 2 is a square in Ql17. For p = 00, there 
are clearly lots of roots. And there are clearly no rational roots. 

122 This isn't too hard if one uses more advanced tools such as biquadratic 
reciprocity. An elementary (but not easy) proof can be found in [Cas86], 
page 57, and one using algebraic number theory is outlined in [Cas91], page 
88. 

123 All sorts of polynomials are irreducible over Ql and reducible over some 
Qlp (think of X 2 + 1 for example), so the "only if" part is bunk. The "if" 
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part works, because if a polynomial were reducible over Q it would certainly 
be reducible over all the Qp. Of course, the "if" part is not very interest
ing ... How about this: is it true that a polynomial will be irreducible over Q 
if and only if it is irreducible over some Qp 7 (In other words, given a polyno
mial that is irreducible over Q, can I find a prime p such that the polynomial 
is irreducible over Qp 7) If so, this proves the statement in the exercise with 
"irreducible" replaced by "reducible." 

124 We have 

which establishes the correspondence. We are interested in deciding when 
there are roots in the rational numbers (or p-adic numbers, or integers modulo 
pn = m for some m), and the correspondence shows that (in each case) the 
equation with a will have a root if and only if the equation with a' does. So 
we might as well work with a'. Doing the same for band c, we see that we 
can assume that all three coefficients are square-free. 

125 By the previous problem, we may assume a, b, and c are square-free 
and have no common factors, and we do. Let k = gcd(a, b), which we assume 
is greater than 1. Notice that k must be square-free. Then we can set 
a = ka', b = kb', and we know that k is relatively prime to c. Suppose that 
ax2 + by2 + cz2 = O. If we look at the last equation, we see that k must divide 
cz2, since it divides the other two terms. Since it is prime to c, it divides z2. 
Since it is square-free, it must divide z. So write z = kz', plug in, divide by 
k, and continue from there. 

126 For n = 0, we get the sum of p ones, which is p, hence is == 0 (mod p). 
Instead of trying to give a general proof, here's the proof for n = 1: choose 
and fix a number a, 2 ::; a ::; p - 1 (this is possible, since p is odd). I want to 
compare the two sums 

p-l p-l 

LX and Lax. 
x=o x=o 

It is not hard to show that the numbers 0, a, 2a, ... (p - l)a are all non
congruent modulo p. (Do it!) Since there are p of them, they must be 
congruent, in some order, to 0, 1, ... p - 1. (In other words, modulo p the 
list of the ax is just a permutation of the list of x.) This means that the two 
sums are congruent: 

p-l p-l 

LX == Lax (mod p). 
x=o x=o 
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We can rewrite this as 
p-l p-l 

o == LX - L ax (mod p) 
x=o x=o 

p-l 

== (1- a) LX 
x=o 

and, since 1 - a oj. 0 (mod p), the conclusion follows. 
Reorganizing this to take care of more general exponents is not too hard: 

what we need is to show that we can choose our a so that an oj. 1 (mod p). 
If so, the same proof will work! 

127 What we need to check is that the polynomial f(X) = aX2 + by5 + cz5 
satisfies the conditions in Hensel's Lemma. But that's easy: f(xo) == 0 is our 
assumption, and f'(xo) = 2axo oj. 0 (mod p) because p is odd and does not 
divide a or Xo. 

128 Well, certainly in the application of Hensel's Lemma (we need to know 
that whichever of xo, Yo, or Zo is not divisible by p has a coefficient next to it 
which is not divisible by p). But presumably also in the Proposition: where? 
(Hint: suppose one of a, bore is divisible by p; is the Proposition still true?) 

129 Of course, the idea is to use the result in Problem 112, using Hensel's 
Lemma as we did in Problem 127. The difficulty is that, since p = 2, there is 
no doubt that the derivative will be divisible (once) by p. If we look hard at 
the conditions in Problem 112, we see that we need to find an initial solution 
(xo, Yo, zo) such that aX5 + bY5 + cZ5 == 0 (mod 8). 

Very well, we know that the sum of two of the coefficients, say a and b, 
is divisible by 4: a + b == 0 (mod 4). Now there are two possibilities: 

• if a + b == 0 (mod 8), then we can choose Xo = Yo = 1 and Zo = 0, and all 
is well; 

• if not, we will have a + b == 4 (mod 8); choosing Xo = Yo = 1 and Zo = 2 
will then do what we want (check!). 

In either case, we are in business, and Hensel's Lemma gives the solution in 
(h 

130 Suppose a is even, band c are odd, and ax2 + by2 + cz2 = o. As before, 
we can assume that at least one of x, y and z is a 2-adic unit, and that all 
three are in Z2. There are two cases to consider: 

• x is in 2Z2. Then clearly ax2 is divisible by 8, and it is easy to see that y 
and z must be 2-adic units. Since the square of a 2-adic unit is always in 
1 + 8Z2, it follows that 

0= ax2 + by2 + cz2 == b + C (mod 8). 
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• X is a 2-adic unit. Then y and z again must be 2-adic units (if, say, 
y E 2&::2, then ax2 + by2 would be divisible by 2, and therefore cz2 would 
be divisible by 2; but we know c is odd, so z would have to be in 2&::2; but 
then by2 + cz2 would be in 4&::2, hence so would ax2 . .. ). Once again, the 
square of a 2-adic unit is always in 1 + 8&::2, and we get 

a + b + c == 0 (mod 8). 

The converse is once again an application of the generalized form of Hensel's 
Lemma (but it's actually easier this time, because we have information about 
a, b, and c modulo 8). 

131 Necessity is easy: since pia, we have by2 + cz2 == 0 (mod p), and it's 
not hard to see that both y and z will have to be p-adic units. Hence, we 
can rewrite the equation as b + (y I z) 2 C == 0 (mod p), and it is now a matter 
of showing that if a p-adic unit fits into this equation, then we can find an 
integer that does (and that is easy). 

The sufficiency is Hensel's Lemma again, of course. 

132 The magic words here are "quadratic reciprocity." Have a chat with 
the local number theorist, who is likely to wax poetic over this one. 

133 n! converges to zero, n and lin diverge, pn converges to zero, and 
(1 + p)pn converges to 1. 

134 We've pretty much already proved this. Look at Lemma 3.2.10. 

135 Exactly the same proof that works over ~ works here also. Basically, 
the fact that Ix + yl ::; Ixl + Iyl says that when the sequence of partial sums 
of 'L lanl is Cauchy, then so is the sequence of partial sums of 'Lan. 

136 If 'L an = 0, the inequality is vacuous. If not, for any partial sum, we 
have 

I ~ ani::; max lanl ~ O<n<N 
n=O - -

by the non-archimedean property. Now note that for large enough N we have 

because the an tend to zero, and 

by Lemma 3.2.10. 
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137 Examples in R 

l: ~ 
p prime P 

are all divergent. 

138 We used the ultrametric inequality a number of times, but basically in 
two ways: 

i) to conclude that a series converges when we know that its terms tend 
to zero, 

ii) to conclude that a sum is less than c when each of the summands is 
less than c. 

Both uses are crucial, so we don't expect that this result remains true over JR. 
Can you construct a counterexample? There are theorems of this sort that 
are true over JR, but in that case the crucial property is absolute convergence. 
See, for example, section 8.21 of [Ap074]. 

139 This is true in the classical setting (i.e., over JR), and the same proof 
works here. But it's not hard to do: work with partial sums. We have 

n=O n=O n=O 

because these are all finite sums; now take the limit. 

140 Again, this is a classical result, and the same proof works in our setting. 
The proof is similar to the one in the previous exercise, but one has to be a 
little careful because the product of the N -th partial sums is not equal to the 
N-th partial sum of the product series, and one has to deal with the extra 
terms. It might be fun to go through it to see if working p-adically makes it 
any easier. 

141 Well, the basic content of the intermediate value theorem is that the 
image of an interval under a continuous function is an interval. This is 
a special case of a general fact, true in any metric space: the image of a 
connected set by a continuous function is a connected set. This is true in the 
p-adic context, but is kind of silly, since the only connected sets are those 
which consist of exactly one point! 

A more interesting question is this: suppose f(X) is a polynomial (might 
as well choose an easy function to work with). What can you say about the 
range of values of f (x) as x runs through 'Lp? 
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142 It's what you think it should be! 

143 The easiest version is locally constant everywhere except at zero. Define 
f(O) = 0 and make f(x) be constant on annuli around zero of smaller and 
smaller radius. Then arrange the values so that the derivative at x = 0 exists 
and equals O. For a more "natural" construction, see Problem 348. 

144 The chain rule is true because the usual proof works quite well. Once 
that is known, it's easy to see that one can make "almost constant" functions 
by taking one such and composing with any other non-constant differentiable 
function. That'll yield a great many examples! 

145 In each case, one has to look at how the p-adic valuation of the general 
term changes as n -+ 00. For (i), note that vp(pnxn) = n + nvp(x) 
n(l + vp(x)); if vp(x) > -1, this will tend to infinity with n, so that 

Ipnxnlp = p-n(1+v p (x» 

will tend to zero, and the series will converge. Otherwise, the series will 
diverge. So the radius of convergence is given by vp(x) > -1, or Ixl p < p. 
(ii) is very similar. The hardest one is (iii): we want to compute vp(n!xn ) = 

vp(n!) + nvp(x). The difficulty is to estimate vp(n!). This will be done later 
in the chapter, but give it a go now. If you can show that vp(n!) grows faster 
than linearly in n, then the series will converge for all x. Does it? 

146 All that needs to be checked is that the definition of the sum and 
product power series agrees with the sum and product series in problems 139 
and 140. 

147 Clearly the formula is 

where 

n 

en = L amdm,n, 
m=l 

00 

g(x)m = L dm,nxn . 
n=m 

So what's needed is a formula for the coefficient dm,n of degree n in g(x)m. 
That can be gotten by induction from the definition of the product of two 
power series. If you can't find it by yourself, look further down in this section! 

148 It's easy to see that the extra condition doesn't hold, since g(l) = 0 
is certain to be smaller than the terms of the series. The first few terms of 
h(X) look like this: 

2 16 3 20 4 104 5 304 6 
h(X) = 1 - 2x + 4x - -x + -x - -x + -x + ... 

3 3 15 45 
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Since g(X) is just a binomial, it isn't hard to write out the general term of 
heX). (Do it!) 

Provided we can show the estimate on the coefficients, it's clear that 
h(l) = 1 - 2 + multiples of 4, so that h(l) == 3 (mod 4). So it all boils 
down to showing that the estimate V2(an ) :::: 1 + n/4 holds for n :::: 2. This 
is actually rather hard, but you might want to give it a try. For a (rather 
sophisticated) reference, see [Lan89], Chapter 14, section 2, which will also 
give a clue about why this particular power series is interesting. 

149 This is straightforward manipulation of formal series. (Or can you 
think of a smarter way to prove these?) 

150 Imitate the classical proof. 

151 The phrase assumes that the roles of f and 9 in the proposition are 
symmetric, that is, that if we start with 9 and construct a new series as 
specified, the result will be f. Can you check that? 

152 This is a matter of writing out g(x) and using Proposition 4.1.4 to 
reorganize it into a power series in x. Say f(X) = L enxn. Since lal = 1 
and Ibl < p, we have 

Ixl < p {==} lax + bl < p 

and 

Now check that we can reorganize that to get 

153 First, the region of convergence of a power series is either an open or 
a closed ball, hence is an open set. Hence, if Xm -+ x and f(x) and g(x) 
converge, we can conclude that f(xm ) and g(xm ) converge for large enough 
m. Now use Proposition 4.4.2 to reduce the problem to the case where x = O. 

154 Just use the proposition repeatedly (equivalently, use an induction 
proof where the step is provided by the proposition). 

155 Well, the formula for ak suggests that it's f(k)(x)/k! that's the inter
esting quantity, and notice that the formula says that if the an are in Zp then 
so are the coefficients of f(k)(x)/k!. That's kind of neat. 
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Actually, in certain cases one wants to consider whether the "quasi
derivative" defined by 

has nice enough properties to replace the derivative. This is relevant, for 
example, if we are working over a field of characteristic p and we have k > p. 

156 We need to consider Cnj = anxjan-l-j. Since both x and a are in Zp, 
we get ICnjl :s; lanl ---> 0, which gives one of the conditions we need to check. 
For the other, note that Cnj = ° if j :2: n. 

157 If we put f(X) = L: anXn, and assume it converges on pmzp, then, as 
in the proof of the Corollary, We have to look at the series L: anpmn xn. We 
need to find N such that 

and 

Then f(X) has at most N zeros on pmzp. 

158 The first series converges for Ixl < p, hence for x E Zp, and since 
Ipnl = p-n is strictly decreasing, we have N = 0, so that there are no roots 
in Zp. (In fact, we have 

1 '""' pnxn = __ _ 
L...J 1- px 

and this is clearly never equal to zero.) The second series converges on p2Zp , 

and changing variables as above gives N = ° again. (What is the sum?) The 
third one is again the hardest; to count the roots in Zp, one needs to find the 
last n such that n! is not divisible by p, which gives N = p - 1. Thus, the 
series has at most p - 1 roots in the unit disk. If you managed to determine 
the precise radius of convergence, can you say anything about other possible 
roots? 

159 Since vp(n) is the largest m such that pm divides n, it's clear that 
vp(n) :s; logn/logp. But then vp(n)/n :s; logn/nlogp, which tends to zero 
as n ---> 00, which gives what we want. 

160 If p = 2, then -1 = 1 - P E B, so that log2( -1) makes sense. On 
the other hand, we must have 210g2(-1) = log2(-1)2 = log2(1) = 0, so that 
loge -1) = 0. Writing out the series for log(1 - 2) gives 

- 2+-+-+-+···+-+··· ( 22 23 24 2n ) 

234 n 
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and saying that this converges to zero in 1Q2 amounts to saying that its partial 
sums get more and more divisible by 2. This was the claim in chapter one. 
For an estimate of the power of 2 dividing a partial sum, we might write 

which shows that 

12 + 22 + 23 + 24 + ... + 2N 1 = 12N+1 +···1 :::; max{12n InI2}. 
2 3 4 N 2 N + 1 2 n>N 

Thus we need to estimate 12n In12' or v2(2n In), for large n. Now, v2(2n In) = 

n - v2(n) ~ n -logn/log2, so a lower bound for the exponent will be given 
by the least value of n -lognl log 2 for n > N. Now use some calculus. 

161 Define a power series by f(X) = log(l + pX), which will converge for 
x E 'llp. We need to find the last N for which the coefficient aN has the 
maximum absolute value. Writing down the series explicitly (do it!), one 
sees that N = 1 if P -I- 2 and N = 2 if P = 2, which gives us the answer we 
want. 

162 Just use the previous result for the first part: if x E 1 + p'llp satisfied 
xp = 1, then clearly logp(x) = 0, and the previous problem says this can 
only happen if x = 1. For the second statement, notice that if xP = 1, then 
Ixl = 1, so that any such root must be in 'llp- Reducing modulo p gives an 
element x of 'lllp'll whose p-th power is one, which implies that x = 1 in 
'lllp'll, i.e., that x E 1 + p'llp. In a nutshell, a p-th root of unity must be 
in 1 + p'llp, and Strassman's estimate says that there are no nontrivial ones 
there. Thus, there are no nontrivial p-th roots of unity in IQp. 

163 This is very similar to, but easier than, the previous theorem. 

164 Write out the expression of n! as a product, and work out how many 
numbers are multiples of p, how many of p2, etc. 

165 What the hint says. 

166 Not serious ones! 

167 Rewrite the inequality as v:::; l+p+·· .+pv-l and prove it by induction. 

168 Since log2( -1) = 0 and the terms of the series are non-zero, there's 
no chance that the condition Ig(x)1 ~ lamxml is going to be satisfied. This 
points out a general fact: whenever g(x) = 0, we'll have trouble applying 
Theorem 4.3.3. 
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169 This is very similar to what we did in the text for the exponential. The 
regions of convergence will, of course, be the same as those for the exponential 
function. (Why "of course"?) The "p-adic trig functions" won't be periodic, 
because of Corollary 4.4.10. 

170 The elements of Z/nZ can be represented by the integers between 1 
and n. It's easy to see that if a is invertible in Z/nZ, then gcd(a, n) = 1 (can 
you prove it?). For the converse, use the fact that if gcd( a, n) = 1 then we 
can find integers rand s such that ra + sn = 1, and reduce modulo n. 

171 (1 + qX)(l + qy) = 1 + q(x + y + qxy), and 

1 
--- = 1 - qx + q2x2 _ q3x3 + ... 
1 +qx 

which converges because x E Zp- Similarly with p instead of q. 

172 We already know that there are exactly (p -1) roots of unity in Zp, by 
a combination of Hensel's Lemma (Problem 115) and Strassman's Theorem 
(Problem 162). Further, Hensel's Lemma already tells us that no two of the 
(p - l)-st roots of unity are congruent modulo p. (For p = 2, one needs to 
change this slightly; see problems 116 and 163.) Can you come up with a 
more direct argument? 

173 Since 7f gives an injective homomorphism between V and (Z/ qZ) x , 
and these groups have the same number of elements, 7f must in fact be an 
isomorphism. Now let U E Z;, and suppose 7f(u) = n E (Z/qZY. Choose 
( E V such that 7f(() = n. Then U1 = U(-l E U1. The map 

Uf-+((,U1) 

gives the isomorphism between Z; and V x U 1. 

174 Not much needs to be changed. V is not the image of lFi (which has 
order one, after all), but we can still define w as the projection on V, and 
make the resulting notational changes. 

175 We know x = w(x)(x). Since W(X)p-1 = 1, we have w(x)P = w(x); 
taking p-th powers over and over, we see that w(x)pn = w(x) for any n. 

On the other hand, (x) = 1 + qy for some y. Taking p-th powers, 

(x)P = (1 + qy)P = 1 + pqy + multiples of q2, 

so that (x)P E 1 + p2Zp. Repeating, we see that (x)pn E 1 + pn+1zp, so that 
(x)pn tends to 1 as n -+ 00. Putting these together gives what we want. 
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176 If Ixl = 1, we want to look at the sequence (~) as n tends to infinity. 
If it tends to zero, then the series converges for Ixl = 1; if not, not, and 
the radius of convergence is 1. Can you decide? The answer may very well 
depend on a! 

177 This one is much easier: if lal > 1, then la - il = lal (because "all 
triangles are isosceles"). Putting this together with our various estimates on 
In!1 should allow you to get an answer. 

178 When a is a positive integer, this is obvious, since 

B(a,x) = (1 +x)a = ~ (7)xi 

is actually a polynomial. For negative integers, all we need to notice is that 
we have B(a,x)-l = (1 +x)-a. 

179 According to Koblitz, this is a special case of a theory due to Bombieri. 
It takes quite a bit of work, though some bits aren't hard. For example, we 
already know that B(lj2, x) converges if Ixl < 1, that is, if x E p7l.,(p) (since 
x is rational). So we need to know for which ajb is it true that (ajb)2 is a 
one-unit. Now (ajb)2 -1 E p7l.,p means that p divides a2 - b2 = (a + b)(a - b) 
(which is the numerator), and hence that it divides either a + b or a-b. This 
shows the "if" in (i). For the converse, we need to know that the series does 
not converge if x (j. p7l.,po The rest is similar. 

180 See any book on real analysis or general topology. 

181 The easiest way is to exploit the proposition that follows this problem 
in the text: a function on 71., that cannot be extended to 71.,p will work. Say, 
choose an element a E 71.,p which is not in 71., (say, any ajb with p f band 
b> 1), and define J(x) = 1j(x - a) for any x E 71.,. Then J is continuous on 
71., but not uniformly continuous (check!). 

182 The main point is that an - am small implies J(an) - J(am) small by 
the uniform continuity. It's pretty much a direct check in E - 8 style. 

183 If bk is another sequence tending to x, then ak - bk tends to zero; by 
the boundedness and uniform continuity, it follows that J(ak) - J(bk) tends 
to zero, which is what we want. 

184 This is very similar to the other two problems: easy E - 8 stuff. 
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185 Basically, all that needs to be done is to run through the argument and 
check that the only result we needed was that Zp was compact and that Z 
was a dense subset. Hence the argument works for any compact subset of 
Qp and any dense subset of that. (Even for Zp, that's an advantage. For 
example, if p -I- 2 the even integers are dense in Zp, and we can interpolate 
from them to all of Zp-) 

186 This one's really pretty hard. Here's one way. First check that each 
term in the series for B(a, x) is continuous as a a function of a. This is 
easy, since (~) is a polynomial in a. Then check that the series converges 
uniformly (as a series of functions of a-we mentioned this property in the 
proof of Prop. 4.4.4; see a book on real analysis for more information). This 
implies (exactly as in the classical case) that the sum is a continuous function 
of a. 

187 This is simpler than it seems. To begin with, in Z2 there is a good 
notion of "even," since 2 is not invertible. Hence if we define (-1)<> = 1 is 2 
divides a and = -1 if not, everything works. On the other hand, if p -I- 2, 
then 2 is invertible, and there's clearly no good way to extend the whole 
function. 

If we want to do the interpolation "in pieces," as in the text, then it 
works. Take p = 3, so that p - 1 = 2, and the two choices for ao are 0 and 
1. In fact, 10 and h are pretty easy to work out: 10(a) = 1 for all a and 
h(a) = -1 for all a. Then 10 interpolates (_1)<> for a == 0 (mod 2), i.e., 
for even a, and h does the same for odd a. A dumb example, but maybe it 
sheds some light on what is going on ... 

What happens if p = 5? 

188 Easy: do the same as you did in Problem 42. 

189 Again, this is a repeat of Problem 43. 

190 The hardest property to check is (ii). For the sup-norm, even that 
one comes easily: we want to check that IIv + wll ::; Ilvll + IIwll. Let v = 

alVl + ... + anVn and w = b1Vl + ... + bnvn ; the inequality translates into 

max lai + bil ::; max lail + m~x Ibil· 
~ ~ ~ 

But that follows easily from the fact that lai + bil ::; lail + Ibil for each i. 
For the r-norms, it's a little harder to get (ii); in fact, it may be worth 

looking it up in books on functional analysis (where it's done in much greater 
generality). If you'd like to give it a try, here is an outline of the standard 
proof. 

First of all, it's relatively easy to prove the triangle inequality if r = 1 
or r = 2, so we'll concentrate on providing hints for the rest. (Actually, the 
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proof we sketch works fine for r = 2.) Next, for each r > 1, let r' > 1 be the 
real number such that 

1 1 -+-=l. 
r r' 

We sometimes call rand r' a dual pair. I A lot of the proof depends on 
the duality between the r-norm and the r'-norm. The first lemma is the 
following: 

• Let a and f3 be positive real numbers, and let rand r' be as above. Then 
we have 

a r f3r l 

af3< -+-. - r r' 

To prove that, plot the function y = xr- I , the lines x = a and y = f3, 
and try to locate in your picture the various quantities that appear in the 
inequality. 

Now the next step: prove the Holder Inequality. Let VI, V2, ... , Vn be a 
basis, and take two elements 

and 

Then show that 
n 

L laillbil ::; IIvllr Ilwllrl 
i=1 

For the proof, apply the previous inequality with a = lail/llvllr and f3 = 
Ibillllwllr' for each i = 1, 2, ... , n, and add the results. (For r = 2, this 
should be a familiar formula-is it?) 

Finally, use the Holder Inequality to prove that Ilv+wllr ::; IIvllr + Ilwllr. 
Here's the idea: start with the sum whose r-th root is the norm: 

n n 

L lai + bilr = L lai + bilr-Ilai + bil 
i=1 i=1 

n n 

::; L lai + bilr-Ilail + L lai + bilr-Ilbil 
i=1 i=1 

(where we've just used the triangle inequality for the absolute value), and 
now apply Holder's inequality to both summands and the pair (r, r'). 

This was a hard one! 

1 Notice that if r = 2, then r' = 2; this is what makes the case r = 2 special. On 
the other hand, if r = 1, the only sensible choice for r' is +00. What norm would that 
correspond to? 
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(a) sup-norm (b) I-norm 

(c) 2-norm (d) 3-norm 

Figure A.l: Unit balls for various norms 

191 See figure A.I. 

192 Try a vector space of dimension one. 

193 Well, 11(1, -1)11 = 0 kind of messes things up. (On the other hand, the 
other two conditions are satisfied; is that significant?) 

194 To prove that equivalent norms define the same topology, it's enough to 
show that an open ball with respect to one norm is an open set with respect 
to the other. Since this is a vector space with a norm, it's enough to prove 
this for one ball, say, the open unit ball. So let B = {x E V : IIxllI < I}. 
If x E B, then let r = IlxiII. Choose R < (1 - r)jC; it's easy to see that 
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the set N = {y E V: Ily - xl12 < R}, which is an open ball with respect to 
II 112, is contained in B. This shows B is open with respect to II 112, and, since 
everything is symmetric, proves what we want. 

For the converse, we can be direct or we can be fancy. For a direct 
approach, show that if the two topologies are equivalent, the closed unit ball 
with respect to one norm must contain a closed unit ball with respect to the 
other. (For example, argue that the open unit ball for II IiI is open with 
respect to II 112, and hence contains an open II 112-ball around zero, which 
contains a closed II 112-ball-of slightly smaller radius-around zero.) Then 
look closely at what this means to get one of the inequalities we want. 

A fancier approach would be this: consider the identity map ~ : V ----+ V, 
so that ~(v) = v. We give the "first" V the norm II 111 and we give the "second" 
V II 112. Since this yields the same topology on "both" V's, both ~ and 
its inverse are continuous linear transformations. Unwinding the continuity 
yields the inequalities we want. 

195 The two inequalities in the definition of equivalence can be restated as 

for any v E V. This clearly translates to what we said about closed balls. 

196 Easy. 

197 The sketches make it clear that any ball with respect to one of the 
norms, say II 111, both contains and is contained in balls with respect to the 
other norms, and this translates directly into the existence of C and D. 

198 max{lal, Ibl} :::; lal + Ibl :::; 2 max{lal, Ibl}· 

199 This is mostly straightforward if we do it in the usual "circle of im
plications" way. To see, for example, that (i) implies (ii), suppose that f is 
continuous at O. Then given any c > 0 there exists a 0> 0 such that Ilvll :::; 0 
implies Ilf(v)11 :::; f. Making 0 smaller if necessary, we can find an element 
x E K such that Ixl = o.But then we have 

Ilvll :::; 1 ===? Ilxvll :::; Ixl = 0 ===? Ilf(xv)11 :::; c 

===? Ilxf(v)11 :::; c ===? ollf(v)11 :::; c 
c 

===? Ilf(v)1I :::; 8' 

so that the sup is finite. The other implications are similar. 
For an added challenge, show that all of these conditions are also equiv

alent to the assertion that there exists some v E V and some positive r E ~ 

such that f is bounded on the closed ball of radius r around v. 
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200 This is a standard example in functional analysis (these spaces are 
sometimes known as Rco(K) and Rl(K)). If necessary, look it up. 

201 See Chapter 6! 

202 The picture in two dimensions is like this: the unit ball with respect to 
the sup-norm is a "square" defined by Jail ::::: 1 and la21 ::::: 1, where al and a2 
are the coordinates with respect to our basis. (In ~2, this is the square given 
by -1 ::::: x ::::: 1 and -1 ::::: y ::::: 1.) What we are doing is partitioning the sides 
of the square into pieces of radius less than E: and using this partition to cut 
the "square" up into lots of "rectangles." Then we show that the rectangles 
do the job. Now draw the picture. 

203 Checking that 2 is not a square in Q5 is just a matter of seeing that it 
is not a square modulo 5, which is easy. For the norm, we can try 

This gives the 5-adic norm when b = 0, i.e., on Q5, but is not an absolute 
value on Q5( v'2)~why not? 

204 The point is that one of the cube roots of two is real, and the other 
two are complex. The field obtained by adjoining the real root is contained 
in ~, hence can't be equal to its image under an automorphism mapping ~ 
to a complex cube root. 

205 Either a( viJ5) = viJ5 or a( viJ5) = -viJ5, because those are the only 
two roots of X 2 - D. But any field that contains viJ5 contains -viJ5. 

206 Any a must map ( to another root of X 2 + X + 1; the roots are ( and 
(2, so we're OK. Similarly the image of ~ must be a cube root of two; there 
are three: ~, (~, and (2~, and they are all in K. 

207 The point is that the minimal polynomial of 0: is the characteristic 
polynomial of the matrix. 

208 Follow the hints! 

209 If we remember that K = F(o:) is isomorphic to the quotient of F[X] by 
the ideal generated by j(X), it's not hard. Let C be an algebraically closed 
field containing K. For any root 0:' of j(X), consider the map K[X] --+ C 
mapping X to 0:'; pass to the quotient to get a map from K = F(o:) to C, 
whose image must be K, by normality. To get the final conclusion, write 
j(X) as a product of linear factors. 



A Hints and Comments on the Problems 271 

210 If K/F is normal, but K is not equal to F(a), then just use Prob
lem 208. 

211 Does taking the product in the normal closure work? 

212 A general quadratic extension works exactly like the example in the 
text. For the second half, it can be easier or harder depending on the elements 
you choose to work with; I'd try (, ij2, and (+ ij2. The first two are easy; the 
determinant method is tempting for the last one, but we'll have to compute 
a six-by-six determinant ... 

213 No big deal. The only real point: given x and y in the algebraic closure, 
the field Qp(x, y) is a finite extension of Qp; hence the norm we have defined 
gives an absolute value on Qp(x, y). It follows that Ix + yl :::: max{lxl, Iyl} 
and that Ixyl = Ixllyl, which is what we needed to prove. 

214 Use the same strategy as in the Lemma, i.e., reduce modulo p after 
making sure that everything is in Zp-

215 Suppose f(X) factors in Qp[X]; by the lemma, it also factors in Zp[X]. 
Since f(X) is monic, the top coefficients of each of the factors must be in
vertible in Zp (yes?), and therefore are non-zero modulo p. If we now reduce 
modulo p we get a non-trivial factorization in lFp[X]. 

216 The argument will still work if we assume that the top coefficient of 
f(X) is invertible. Otherwise, the reduction modulo p of f(X) will have 
degree smaller than the degree of f(X), and things begin to get weird. 

217 Well, modulo p an Eisenstein polynomial looks like xn. If we factor 
that as xr . XS, the factors are not relatively prime, so we can't apply the 
Lemma. If we factor as xn . 1, we can, but the factorization will be as the 
product of a polynomial of degree n and a polynomial of degree zero, which 
means it will be the trivial factorization. 

218 Yes, and this is proved in Chapter 6. In fact, proving this first would 
allow us to simplify many of the proofs in this section. 

219 Let f(X) E Zp[X] be a monic polynomial of degree n such that /(X) 
is irreducible in lFp[X] and whose roots generate an extension IF of degree n. 
Let K be the extension of Qp obtained by adjoining a root of f(X). We know 
both K and IF are extensions of degree n, and we've arranged things so that 
IF is a normal extension. Now: (1) use Hensel's Lemma to show that f(X) 
has n roots in K, then (2) conclude that K is a normal extension of Qp. Use 
the fact that automorphisms preserve absolute values to show (3) that every 
automorphism of K /Qp induces an automorphism of IF /lFp- This gives a map 
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from Gal(K/Qp ) to Gal(lF /lFp). Then it's a matter of showing this map is 
injective (and is therefore an isomorphism). 

220 Eliminate one prime at a time from the denominator. 

221 Yes, of course: a polynomial in Z[X] which satisfies the conditions 
in the Eisenstein criterion for some prime p is irreducible in Qp[X], and a 
jortiori 2 irreducible in Q[X]. 

222 Yes. Can you prove it? 

223 Let's do the first one; 

N F ,j1Q5 (1 + 3/2) = (1 + 3/2)(1 - 3/2) = 1 - 18 = -17, 

so 
1 

v5(1 +3/2) = 2v5(-17) = O. 

The others are similar, but keep in mind that what we know about valuations 
still works. For example, it's easy to see that V5( /2) = 0, by computing 
the norm, and then it follows that V5 (5/2) = 1; hence ("all triangles are 
isosceles") v5(1 + 5/2) = o. 

224 The nicest one of these is x = V5: 

so v5(V5) = 1/2. As well it should be! 

225 Let's try x = 1 - (: 

N F,/1Q3 (1 - () = NIQ3 (0/1Q3 (N F3/1Q3 (() (1 - ()) 

= NIQ3(()/iQ3(1- ()2. 

(Remember that F3 is an extension of degree 2 of Q3(().) To compute the 
norm, take {I, (} as a basis for Q3(() over Q3' The matrix of multiplication 
by 1 - ( is 

(remember that 1 + ( + (2 = 0 for that one), so the norm (which is the 
determinant) is 3. It follows that 

2Run for the dictionary! What does he mean, a fortiori? 
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and then that 

Try some of the others. 

226 It's not too hard to see that the answers must be e = 1, 2, 2, respec
tively. But how would a proof go? 

227 For F1 , 7r = 5 will do, and for F2 , 7r = V5. For F3, the computation is 
problem 225 helps: 7r = 1 - ( does the job. 

228 Follow the hints; this is mostly straightforward. For example, to show 
that j:lK is principal, just note that 

x E j:lK ===} vp(x) > 0 ===} vp(x) :::: lie 

===} vp (7r- 1x) :::: 0 ===} 7r- 1X E fJ K 

===} x E 7rfJK . 

This is already enough to show 7r generates j:I K. 

The only non-trivial bit in the remainder is showing that the elements 
of fJ K are exactly the elements of K which are roots of monic polynomials 
with coefficients in Zp. In one direction, it's easy: if a is the root of such a 
polynomial, then its norm is (up to sign) a power of the zeroth coefficient, 
which is in Zp. Hence, vp(a) = ~vp(Na) :::: O. For the converse, look at 
Lemma 5.3.6. 

229 For Fl, we get fJ = Z5[V2J, and Ik = 1F5[V2] is a field of order 25. For 
F 2 , fJ = Z5[V5] and Ik = 1F5. For F3 , fJ = Z3[C V2] and Ik is a field of order 
9. 

230 Routine, but important routine. Make sure you understand how both 
portions of the proof work-for the most part, it's a question of keeping track 
of what is divisible by what. Can you come up with a more conceptual proof? 

231 X 2 - 5, of course. 

232 We've done all the work already, when we computed the norm of 1- (, 
which is 3. It follows that v3(1 - () = 1/2, and the extension (which is of 
degree 2) is totally ramified. The Eisenstein polynomial for 1 - ( is X 2 -

3X + 3 (just square 1 - ( and see what coefficients work, or use the fact that 
(2 + (+ 1 = 0). Notice that in this case there is another uniformizer, A, 
since it's easy to see that 

-l+A (= --,-:.-
2 

(since it is a root of X 2 + X + 1). 
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233 Easy: exactly the same proof works-just replace all the p's by 7r's. 

234 The obvious reformulation works, and again the proof is the same. 

235 Well, if you solved problem 112, then your solution solves this one too. 

236 Fl contains the 24-th roots of unity; for F2 , there's no new information 
(only that it contains the 4-th roots of unity, which Q5 already does). F3 
contains the 8-th roots of unity (the degree is 4, and e = 2, so f = 2). As 
for other roots of unity, F3 certainly contains the cube roots of unity, by 
construction. (Notice that the cube roots of unity are I-units, since ( - 1 
is a uniformizer. That means they are "invisible" from the Hensel's Lemma 
side, and therefore not predicted by the Corollary.) What about the other 
two fields? 

237 The first is really easy: xm = 1 implies Ixl = 1. For the second part, 
if xm = 1 and m is prime to pi - 1, then look at the image of x in Ikx, and 
remember that this last is a cyclic group of order pi - 1. 

238 Write x = 1 + 7rU and raise to the p-th power, remembering that 7r is a 
divisor of p. The version for general r requires, of course, an easy induction 
argument. 

239 Just replace 1 by the other m-th root of unity and repeat exactly the 
same argument. 

240 Expanding (1 - xd -1 = 0 shows that 

£ (£) . 
eXl + L i xi = O. 

<=2 

Dividing by Xl and rearranging shows that 

But the left hand side is 1, since £ f:. p, and every term of the right hand side 
is in PK, which is a contradiction. 

241 The quotients are clearly abelian, and problem 238 shows that x E Un 
implies xP E Un+!, so that every element of the quotient is of order p. Now: 
why is the quotient a finite group? (An idea: fix a uniformizer, and consider 
the map Un -> (')K given by 1 + 7rnX f---' x; what properties does this have?) 
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242 To see that they are both unramified, it's enough to check that both 
X 2 - 2 and X 2 - 3 are irreducible over II!'5. That they are the same simply 
means that one can express V2 as a+bv'3 with a and b in Q5. That's rather 
hard to imagine, isn't it? But notice that 6 is a square in Q5 by Hensel's 
lemma! So if"( E Q5 satisfies "(2 = 6, we have V2v'3 = ±,,(, and there we are: 

V2 = ±..l = ± "(v'3. 
v'3 3 

As to the p-adic expansion of a 24-th root of unity, we need to choose our 
"digits" first. Since the residue field is II!' 5 [V2], we might take coefficients 
from the nonzero elements of the set {a + bV2 : 0 ::; a, b ::; 4}. Then, to find 
the expansion, we need to determine, first, the reduction modulo p. That'll 
have to be an element of order 24 in II!' 5 [V2J. Once you find one, use the 
procedure in Hensel's Lemma to get closer and closer to the real thing. 

243 F3 is an extension of degree four, and is ramified (in fact, e=2). Hence, 
the subfield Q3( V2), which is unramified, must be the maximal unramified 
subfield. 

244 Here's a fancy proof that uses the uniqueness we have just proved. Sup
pose the extension is unramified. Then it is equal to the unique unramified 
extension of degree 3. Now consider the extension K' = Q3«({;2) obtained 
by adjoining another cube root of 2 (here, as before, (3 = 1, ( -I- 1). If K is 
unramified, then so is K', since they are clearly isomorphic. If they are both 
unramified, then they are equal, by the uniqueness. If K = K', then, since 
both {;2 and ({;2 are in K, we must have ( E K and, in fact, Q3«() c K, 
which is impossible: extensions of degree 3 can't contain subextensions of 
degree 2! Hence, K must be ramified, and since e must divide the degree, we 
must have e = 3. 

Of course, that's a very fancy chain of reasoning! (It's the one that the 
author followed, though ... ) Can you exhibit directly an element of K whose 
minimal polynomial over Q3 is Eisenstein? 

245 The point is that for any such m one can find an r such that m divides 
pT _ 1, and the (pT - 1 )-st roots of unity are in Q~nr. 

246 The image of vp is still Z, since there has been no ramification. The 
residue field is the algebraic closure of II!'p. 

247 The residue field is the same (it can't very well become any bigger), 
but the image of vp on Qp is Q. 
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248 Let a E K be a uniformizer; since K is totally ramified, the minimal 
polynomial for a is an Eisenstein polynomial, so a e + ae-l a e - l + ... + al a + 
ao = 0 with plai for all i and p2 f ao. Now rearrange the equation to get 

a e + ao = -(ae_Iae- 1 + ... + ala). 

Every term on the right hand side is divisible by pa, so that vp(ae - ao) ?: 
1 + 1je. This suggests that the pu in the problem will be -ao, but to make 
it work we have to show that we can pass from the "approximate root" a to 
a real root. The obvious way to do this is Hensel's Lemma, but that method 
doesn't work: if we put f(X) = xe_pu, our estimates give vp(f(a)) ?: l+lje 
and vp(f'(a)) = 1 - 1je, which isn't enough to use problem 235. 

Here's a more direct method (taken from [Kob84]) that avoids that di
lemma by using some analysis: we have lae - pul ::; p-Ip-l/e = Ipulp-l/e. 
Dividing through by Ipul gives I (aejpu) -11::; p-l/e. In other words, aejpu 
is a 1-unit. Using the binomial series, we can raise any 1-unit to any p
adic integer. Since p f e, we have 1je E Zp; use the binomial series to get 
(aejpu)l/e, and then use that to get a root. 

249 Yes, of course. Just replace p by a uniformizer 7f everywhere. 

250 This is mostly a matter of time and patience. There should be no 
difficulty in checking that everything still works as before. 

251 This is hard! Clearly, the expansion begins with the term in 7fP- I . The 
coefficient will be the reduction mod p of the quotient pj7fP- I. Let's see ... 

We know that 7f is a root of the polynomial 

<I>p(X + 1) = Xp-l + ... + P 

(we've shown that everything in the dots is divisible by p, but we don't really 
know exactly what the coefficients are). Plugging in gives 

7fP- 1 + ap_27fP-2 + ... + al7f + p = 0 

dividing by p and rearranging, 

7fP- 1 ap_27fP-2 + ... + al7f 

p p 

Now, we can certainly determine this for any specific p, but it's hard to see 
what to do to get a general result. And that's just for the first coefficient! 

252 Just use Xl = 1 as your initial root. 

253 Well, if I could, I would very likely have put the simpler one in the 
text. .. Can you? 
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254 If K = Qp((p) contained both a (p - l)-st root of -p and a (p - l)-st 
root of p, then it would contain an element ~ such that ~p-l = -1. Such a 
thing would be a 2(p - 1 )-st root of unity, and we already know that K (a 
totally ramified extension of Qp) contains exactly as many prime-to-p roots 
of unity as Qp does, and hence can't contain ~. 

255 Show first that the minimum will occur at a power of p. 

256 This is really an open-ended project, which should be fun to play with. 
Is the extension still totally ramified? Can we get higher-order roots of -p? 
How about the logarithm function? 

257 To use Krasner's Lemma, what we want to do is find a generator x of 
Qp((p) and a (p - l)-st root a of -p such that Ix - al is less than la - a'l 
whenever a' is some other (p - 1 )-st root of -po (The a' are the conjugates 
of a over Qp, since the polynomial X p- I + p is irreducible.) Understanding 
the la - a'l part isn't hard: any a' must be of the form ~a, where ~p-I = 1, 
and hence, la - a'l = la - ~al = lal11 - ~I = p-I/(p-l). (Remember that we 
proved before that 11 - ~I = 1 when e -=11 is a root of unity of order prime 
to p.) The other bit-finding the x-is a little harder. One idea is to repeat 
the proof in the text to get 

(1- (y-I . (a I-unit) = -po 

Use this equation to choose a appropriately so that we get 

(1 - () . (a I-unit) = a. 

(In other words, we want to ''take the (p - 1 )-st root of both sides of the 
equation;" of course, -p has many (p - l)-st roots, and what the equation 
does is tell us how to choose the right one.) This gives 

1(1- () - al < p-I/(p-l), 

which gives what we want. 
(Notice that the real work of the proof ends up being the same. Krasner's 

Lemma just replaces Hensel's Lemma as the trump card.) 

258 Suppose we can show that the function 

is continuous. Then notice that ¢(ao, al,···, an-I, ao, al, ... , an-I) = 0 
(since in that case the A's and the /-l'S are the same). By continuity, it 
will follow that we can make D as small as we like by choosing the b's close 
enough to the a's, which proves Claim 2. 
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It remains to show that 1; is indeed continuous. In fact, it's not hard to 
see that 1; is a polynomial in ao, al,'" ,an-I, bo, bl , ... , bn- l . This is a very 
classical fact, and one that you may have met before; if not, try to come up 
with a proof. 

259 Solving this one is, at least at a first stage, a matter of reading through 
proofs carefully to see what fails if we drop any of the hypotheses. It's rather 
clear, for example, that characteristic zero plays a minor role (though we 
might need to add a separability condition if we drop it). Will the theorems 
work in complete archimedean fields? (That's not much fun, because they 
will be talking about roots of polynomials with real coefficients, not a very 
mysterious topic.) Will they work if we drop completeness? That would be 
quite interesting, since we would then have a choice of absolute values to 
work with. 

260 Well, we've come close to proving this one in the proof of the Corol
lary 5.7.3, since there we obtained the conclusion by showing that some root 
of g(X) was very close to some root of f(X). See if you can push it through 
to get this result. If you can't, check [Kob84, Section III.3]. 

261 What happens in either if we add a term bmxm to g(X) where m is 
very large and bm is very small? How do the roots of 

relate to the roots of 

(See the section on Newton polygons, in Chapter 6, for further light on this 
one.) 

262 Yes. (Prove it.) 

263 The condition Qp((i-I) C Qp((i) will hold if mi-l is a divisor of mi, 
so we have to make sure that holds. But we need to remember a little more 
about unramified extensions to get this right. First of all, remember that we 
get an unramified extension of degree f by adjoining the (p! - 1 )-st roots 
of unity. So we might as well assume that mi = p!i - 1. You should first 
show that if fi-Ilfi then p!i-l - IIp!i - 1. The divisibility condition in the 
m's, then, translates to a divisibility condition in the f's. Next, suppose we 
have a tower of fields Qp C Qp((i-l) C Qp((i)' Then [Qp((i) : Qp] = fi and 
[Qp((i-l) : Qp] = fi-I, which shows that [Qp((i) : Qp((i-l)] = fil fi-l. Now 
it should not be hard to find the appropriate choice for the f's. 
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264 Elements of Q~nr still have p-adic expansions, since p is still a uni
formizer. The coefficients in such an expansion will be chosen from a set 
of lifts of elements of the residue field, and the roots of unity we have used 
are precisely such a set of lifts. It's not clear that this clarifies anything. 
Note, however, that there are constructions of transcendental elements in R 
which proceed by constructing an appropriate decimal expansion. Is there 
any analogy? 

265 This should be clear. There is nothing in our constructions that de
pends explicitly on the field being Q: any field with a non-archimedean val
uation will clearly do. 

266 The definitions follow this problem in the text. The residue field is 
the algebraic closure of IB'p; the valuation ideal is not principal (there is no 
smallest positive rational number!), and therefore there is no uniformizer. 

267 Suppose x E Cp and vp(x) = r = a/b. Choose a root 7r of Xb - pa in 
Qp; it's fair to say that 7r is a "fractional power of p," and it's also clear that 
vp(7r) = a/b. Then y = x/7r is clearly a unit. Go on from there. 

268 Follow the outline. (This makes a nice longer project.) 

269 One would need to show that the closed unit ball is not compact. To 
do that, you need to exhibit a covering of the closed unit ball by open sets 
which has no finite subcovering. Can you find one? (The closed unit ball is 
just the valuation ring D. Consider the image of D under reduction modulo 
p; how many elements are in the image? Now translate back to topological 
language.) 

270 Mostly routine. The point about p is simply that there are enough 
different possible radii for balls in Cp (any pr with r E Q is allowed, and this 
is a dense subset of R). 

271 It was true in Qp because the ideal in question was a principal ideal. 
This isn't true over Cpo 

272 Imitate the proof in Chapter 3. 

273 Given the caution about choosing 6 appropriately, it's just a matter of 
repeating the original proof. 

274 Since every polynomial with coefficients in IB' has a root, having a com
mon factor is the same as having a common root. 

275 Yes, because we know that g(X) is monic. 
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276 Parts (i) and (iv) are clear, (ii) follows by writing out the sum and 
applying the ultrametric inequality coefficient by coefficient, and (v) is a 
straight application of the ultrametric inequality (and was done in the text 
just before the statement of the theorem). 

277 Clear, since the absolute value of each of the coefficients is independent 
of the field we think it belongs to. 

278 The inequality is very easy to get: just use the non-archimedean prop
erty directly. Over Cp , the equality holds, but this takes some proving. Let's 
do it in the special case where c = 1. In this case, after multiplying by a 
constant if necessary, we can assume Ilf(X)111 = 1, so that all the coefficients 
are in D and at least one is a unit. Then reduce it modulo p to get a polyno
mial with coefficients in IF; the fact that f(X) has a coefficient that is a unit 
means that the reduced polynomial is non-zero. Since IF is an infinite field, 
there must be an element a E D such that f(a) =F 0 in IF. Then it's clear 
that If(a)1 = 1, which proves the equality. 

Can you generalize to arbitrary c? 

279 Basically, we just replace things like f(X) == gl (X)h1 (X) (mod >,p) 
with their translation (in this case, Ilf(X) - gl(X)h1(X)111 < 1). As to a 
version for the II lie, can you decide? (Take a look, for example, at the proof 
of Lemma 6.2.2 and the statement of Proposition 6.2.3.) 

280 Finding a uses a trick we have used before: if c = pr and r = alb, we 
choose a to be a root of the polynomial Xb - p-a, which exists because Cp 

is algebraically closed. Proving that IIf(X)IIe = II¢(f(X))II1 is a matter of 
writing out the definitions. What this tells us is that all of these norms should 
have similar properties, since the equality allows us to transfer theorems 
about one to the other. In fancier terms, the theorem gives an isometric 
isomorphism between two normed rings. 

281 One would need to be a lot more careful, the problem being that it is no 
longer clear that an a exists. What we would need to do is to further restrict 
c. To be precise, the argument still works over a field whose ramification 
index is e if we restrict c to be a real number of the form pr where r E ~Z. 

282 Not really, since no a is available. But look at the proof of Lemma 6.2.2. 

283 If we have a sequence of polynomials of bounded degree, we might as 
well think of them as being all of the same degree (by padding the top terms 
with zeros if necessary). So let fi(X) be a sequence of polynomials of degree 
n. The first requirement is to dig out a candidate for the limit, and the 
obvious thing works: consider each of the coefficients and note that they 
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form a Cauchy sequence themselves. Then it's a matter of showing that the 
polynomial just obtained is the limit we want. 

As to why the boundedness is essential, the simplest example makes the 
point: take c = 1 and look at the sequence 

fo(X) = 1 

h(X) = 1 +pX 

fz(X) = 1 + pX + p2 X2 

This is clearly Cauchy, and clearly its limit cannot possibly be a polynomial. 

284 Because we know something about its N-th coefficient. Fill in the 
details. 

285 Just notice that the inequality holds at every step of the inductive 
construction of g(X). 

286 Start from the fact that Ilf(X) - g(X)llc < Ilf(X)llc' This says, in 
particular, that IaN - bNlcN < laNI~, which implies, via "all triangles are 
isosceles," that IbNI = laNI. Since we know that Ilg(X)llc = Ilf(X)llc = 

laNlcN, the claim follows. 

287 Just from the proof we can see that gi(X) converges to g(X) at least 
as fast as lSi converges to zero. That already says that the convergence is 
quite good. It may be, of course, that a more delicate analysis shows that 
the convergence is in fact faster than that. 

288 If c = 1, then we can multiply f(X) by a constant to assume that 
Ilf(X)1h = 1. In that case, the assumption reduces to saying that aN is 
a p-adic unit and that aj E p if j > N. The reduction of f(X) modulo 
p is then of degree N, and, after multiplying by another (unit) constant if 
necessary, we can assume the reduction is monic. This gives a congruence 
f(X) == gl(X) . 1 (mod p). Now apply Theorem 6.1.2. 

289 What we need to prove is 

• the sum of two series in Ac belongs to Ac, 

• the product of two series in Ac belongs to Ac (this implies that the 
product of a series by a scalar does too, of course). 

But both statements follow directly from Proposition 4.3.2. 
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290 This follows from the fact that absolute values are independent of the 
field in which we place ourselves. 

291 As long as we are thinking of the closed ball in <Cp , this is clear. First, 
if lanlcn ----> 0, then clearly the series converges for any x such that Ixl ::; c. 
For the converse, we just need to note that in <Cp we can always find an x 
whose absolute value is exactly equal to c. Convergence at that x implies 
that lanlcn ----> o. 

Notice that it is important to work over <Cp . It is easy to come up with a 
series that converges in the closed ball of radius c = p-l/lOO in Qp but which 
is not in Ac , simply because the closed ball of radius c in Qp is exactly the 
same as the closed ball of radius p-l. 

If c is not a rational power of p, then there are no x such that Ixl = c, so 
the closed ball of radius c is the same as the open ball of radius c. Can you 
go on from there? 

293 This is identical to problem 276, except for the fact that we've replaced 
the equality in (iii) with an inequality. But that makes (iii) much easier. 

294 No. Can you prove it? (Here's a strategy: handle c = 1 first, by exactly 
the same method, which is feasible because the reduction modulo p is still a 
polynomial. Then use the usual tricks to handle other values of c.) 

295 Same as before. 

296 Again, the same argument as was used for polynomials works here, 
and shows that the map is an isometric isomorphism between the two spaces. 
(It's even a ring isomorphism.) 

297 The map will be continuous if we can find a constant M with the 
property that 

Ilf(X)llcl ::; 1 ===} Ilf(X)llc2 ::; M. 

Try to decide whether such a constant exists. (Thinking about the norms as 
sup-norms on appropriate balls may help.) 

298 We have g(X) = bo +b1X + ... + bNXN and IbNI = max Ibnl. Dividing 
through by bN gives a monic polynomial whose coefficients all have absolute 
value less than or equal to 1. So what we want to prove is this: if g(X) = 
bo + b1X + ... + bN_1XN- 1 + X N satisfies Ibil ::; 1 for all i and a is a root 
of g(X), then lal ::; 1. To prove it, plug a into g(X) to get 
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and rewrite this as 

It follows that 

and, since Ibi I ::::: 1, it follows that 

But this clearly implies lal ::::: 1. 

299 Games with two indices are always a little tricky, but a careful walk 
through the proof should convince you that all is well. 

300 No. It's also not Cauchy. 

301 If c = pr for some r E Q, then it's easy to see that the answer is yes: 
just use the trick we've been using over and over. How would you handle 
general c? 

302 Is this obvious? If an ----t 0, then given c > 0 we can find N such that 
lanl < c if n > N. But then maxn>k lanl < c as soon as k > N. 

303 It certainly should. 

304 Do write out the details. The proof follows blow-by-blow the proof of 
Proposition 6.2.3, so there should be no difficulty in putting it together. But 
doing so will help you understand what's going on. 

305 If Ilh(X) - 1111 < 1, then whenever Ixl ::::: 1 we have Ih(x) - 11 < 1, 
which implies h(x) -1= o. 

306 By Proposition 154, we can rewrite f(X) as a power series in (X - x), 
and in this case the fact that n exists becomes obvious. To show that the 
two definitions of the multiplicity agree, write f(X) as a product as in the 
Weierstrass Preparation Theorem, and then take derivatives. The advantage 
of Cassels' definition is, of course, that it doesn't depend on the theorem. 

307 It's the usual thing: change variables so as to translate from II lie to 
Illh. For more general values of c, it's a little harder-see below. 

308 This particular game should be routine by now. Just follow the usual 
outline. 
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309 If ( is a pm-th root of unity, then f(( -1) = logp(() = o. Hence, f(X) 
has infinitely many zeros in the open unit ball. How can that be? 

310 Write 9(X) as a product of linear factors and rearrange as necessary. 

311 The roots of 90(X) (in CCp ) are the roots of f(X) in the closed unit 
ball, counted with multiplicities. The roots of 91 (pX) are the roots of f(X) 
in the closed ball of radius p, counted with multiplicities. Hence, every root of 
90(X) (in CCp ) is also a root of 91 (pX), with the right multiplicities. Therefore, 
90(X) must be a divisor of 91(PX). 

312 If you are at all hesitant, it might be helpful to write out a detailed 
proof. 

313 We've clearly done enough to prove convergence with respect to II 111. 
For e = pr with r E Q, we then use the usual dodge: change variables, and 
note that this transforms entire functions into entire functions. What should 
you do with other e? (Hint: how does convergence with respect to II lie relate 
to convergence with respect to II lie' when e> e'?) 

314 The point is that "convergent in the closed ball of radius e" and "con
vergent with respect to II lie" are equivalent. 

315 As the next problem suggests, one can make such a function by using 
an infinite product. Something like 

00 

f(X) = II (1 - piX) 
i=l 

will work. It's also easy to arrange it directly in a power series, something 
like 

00 

Lpn(i)X i , 

i=O 

by making n(i) grow fast enough. 

316 This is basically routine. What we are asking for, in a way, is a p-adic 
version of the general theory of infinite products. This would make a nice 
project. For example: we've proved that p-adic infinite series converge when
ever their general term tends to zero; is it true that p-adic infinite products 
converge whenever their general term tends to I? 

317 See figures A.2 and A.3. Note that in (iii), we don't really need to 
divide by 3, because it is a 5-adic unit (dividing by a unit doesn't change any 
of the valuations). 
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Figure A_2: The first two Newton polygons for problem 317 



286 A Hints and Comments on the Problems 

5 

4 

3 

2 

1 

-1 1 2 3 4 5 6 7 

-1 

( iii) 

5 

4 

3 

2 

1 

2 4 6 8 10 

-1 

(iv) 

Figure A.3: Two more Newton polygons for problem 317 
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318 If the polynomial has degree n, the polygon has only one line segment, 
of slope -lin. (In the language we'll introduce below, Eisenstein polynomials 
of degree n over Qp are "pure of slope -lin.") 

319 We would have to start with a vertical line beginning at (0, vp ( ao)) and 
use that point as the initial center for the rotation, but otherwise all would 
be the same. The polygons for f(X) and af(X) will be the same except for 
a vertical translation. 

320 This is just a matter of sorting through the definitions. h(X) will 
be pure of slope m if and only if vp(ai) ::::: mi for all i and vp(an ) = mnj 
translating this to absolute values gives what we want. 

321 Routine, but worth writing up carefully. It's mostly a matter of trans
lating Proposition 6.2.3 to the language of Newton polygons. 

322 Use the fact that Ilf(X)g(X)llc = Ilf(X)lIcllg(X)llc and the character
ization of pure polynomials in problem 320. 

323 It's just a question of translating inequalities for vp to the language of 
absolute values. 

324 Write 

and work out valuations. We can start by noting that vp(an ) = nm 
L Vp(Ai), and go on from there. (This is much trickier than it looks!) 

A more sophisticated method would be to compute 1111p= of each term in 
the product, and then to try to use the characterization of pure polynomials 
in terms of the norm. Does that work? 

325 By induction, we can work at the j-th break, assuming that it happens 
at a point (Xj,Yj) and that the next point is (Xj +ij+l,Yj +mj+1ij+1). It's 
then a matter of translating the assertion that this is the (j + 1)-th segment 
of the polygon into valuations and absolute values. 

326 Yes. Can you prove it? 

327 The polygon of h(X) is obtained from the polygon of f(X) by removing 
the segment corresponding to A, i.e., a segment of slope m and x-length one, 
and then translating the resulting polygon to the origin. This clearly follows 
from our analysis of the roots, but it could be used as the starting point for 
that analysis if we could prove it directly. See [Kob84] for a direct proof. 

328 They tell us exactly what sorts of roots each polynomial has: 
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i) five unit roots, one root of valuation -2; 

ii) six roots of valuation 2; 

iii) two unit roots, four roots of valuation -1/2; 

iv) two unit roots, eight roots of valuation -1/8. 

Notice that the fact that the last two polynomials are congruent modulo 5 
makes them have the same number of unit roots, but that this says very little 
about the other roots. 

329 One polygon has a segment of slope 0 and a segment of slope 3; the 
other has a segment of slope 0 and a segment of slope 1. So even though 
the polynomials are "close," their polygons-and therefore their roots-look 
quite different. In other words, even if Ilf(X) - g(X)lIl is very small, the 
root distribution of f(X) and g(X) outside the unit ball can be completely 
different. (Inside the unit ball, they will of course have exactly the same 
number of zeros of each valuation-check!) 

330 The obvious thing to try is to require that f(X) and g(X) be close 
with respect to the c-norm. Does that work? 

331 Yes. Find an example. 

332 A segment of slope -1 and length 1, followed by an infinite horizontal 
line. The radius of convergence doesn't change, of course, since we've only 
made a finite number of changes. 

333 Just use the same idea: compare the polygon to a line of slope b, 
remembering that by assumption the segments in the polygon all have slope 
less than b. (Does this work when b = m but the sup is not attained? The 
segments will still "all have slope less than b" in that case ... What if the sup 
is attained?) 

334 Draw a picture if necessary, and refer to the previous solution. 

335 The conclusion is that the radius of convergence is O. The proofs still 
work. 

336 One can't do much better than the obvious: the series will converge 
on the closed ball if the points in the polygon get farther and farther above 
(vertical distance) the last segment. 
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337 The first looks like a parabola, and defines an entire function. The 
second is a horizontal line, and so is the third (most coefficients will have 
valuation zero). The second converges on the closed ball of radius 1, the 
third on the open ball. The fourth is tricky: the polygon connects the points 
(0,0), (p, -2), (p2, -4), ... The series converges on the open ball of radius 1. 

338 We'll leave these to the reader, who has certainly got the point by now. 

339 It's just a matter of putting together all the information we already 
have. To show there are no zeros of smaller absolute value, consider a line 
through the (k - l)-st break point of slope smaller than mk, and so on. 

340 Yes it is. Can you prove it? 
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As we end our promenade, it is important to point out to our reader where 
to go for further adventure in the p--adic realm. We will limit ourselves to a 
brief outline of the major sources of information (of which we are aware), and 
invite the reader to explore at will. The comments are, of course, personal 
opinion. 

B.1 Texts 

The first category of books are those which are intended as basic textbooks 
covering the fundamentals of the theory. In general, these are aimed at 
graduate students, but they should be accessible to anyone who has managed 
to read this book. Many of these books were major sources of information 
during the preparation of this book. 

p-adic Numbers, p-adic Analysis, and Zeta-functions, by Neal Koblitz, 
[Kob84], is probably the closest in spirit and subject matter to this book. 
Koblitz includes an introduction to p--adic numbers and p-adic analysis, and 
then goes on to discuss p-adic interpolation, the construction of the p--adic 
zeta-function, and several other related topics. The culmination of this book 
is an exposition of Dwork's proof of the rationality of the zeta-function of 
a hypersurface over a finite field, which is one of the landmarks of modern 
number theory. While the introductory portion of Koblitz's book has much 
in common with this book, Koblitz goes much further than we have. 

Local Fields, by J. W. S. Cassels, [Cas86], is a much broader book that 
contains a great deal that is interesting. Its treatment of the fundamentals 
had a lot of influence on our choices when we were writing this book, but 
once again Cassels goes much further than we do. A particularly interesting 
characteristic of this book is the large number of examples of honest-to
goodness applications of p-adic methods to the rest of mathematics. 

A Course in p-adic Analysis, by A. Robert, [RobOO], is a new book that 
overlaps this one at the beginning, but then goes much further into p--adic 
analysis. Robert also includes some unusual material, such as a way of con
structing a topological model of the p-adic numbers inside ~n. 

Les Nombres p-adiques, by Y. Amice, [Ami75], is another elementary 
introduction to p-adic numbers and p--adic methods, a little brief but very 
useful. Readers who read French might enjoy looking through her book, 
which is slanted towards functional analysis and rationality theorems. 
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Ultrametric Calculus, by W. H. Schikof, [Sch84], despite its unprepossess
ing title, is quite an advanced book. Again, the focus is largely on p-adic 
analysis, and the author assumes that his reader has a good knowledge of 
classical analysis as a starting point. 

Introduction to p-Adic Numbers and Valuation Theory, by G. Bachman, 
[Bac64], starts with a basic introduction to p-adic numbers, and then veers 
off into a discussion of valuation theory in general. It is an interesting book, 
with very little intersection with this one. 

Introduction to p-adic Numbers and Their Functions, by Kurt Mahler, 
[Mah73]' is rather hard to classify. While it presents itself as an introduction 
(and does develop the theory from scratch), it is really focused on a rather 
sophisticated account of continuous and differentiable functions on Qlp with a 
special focus on their interpolation properties. This material is very different 
in flavor from the topics we have discussed, and the book is well worth the 
effort. 

Finally, there is Primeiros Pass os p-adicos, [Gou89], the seed from which 
this book grew. This one the reader, even if fluent in Portuguese, can safely 
disregard, since the only things it contains that were not incorporated into 
this version are the errors, which have been replaced by new and subtler 
errors. 

B.2 Software 

It's not really clear to me that software is "literature," but it is quite clear 
that sophisticated software is becoming an integral part of "doing mathe
matics." The reader who enjoys working with computers may, in fact, find 
that supplementing the problems in the text with actual computation proves 
illuminating. It seems good, then, to have a look at the currently available 
programs that can do p-adic arithmetic. 

The natural choice here is the GP-PARI system, due to H. Cohen, C. Batut, 
D. Bernardi, and M. Olivier. This exists both as an interactive "calculator" 
called GP and as a library of C routines that one can use in one's own pro
grams. In GP, one works with p-adic numbers by using "big-oh notation:" 
p-adic numbers are represented as approximations to their p-adic expansions, 
if the given expansion is to be treated as correct up to the term in p99, one 
indicates this by adding +0(p-100) at the end of it. Here's an example in 
which we compute (an approximation to) the square root of 2 in Ql7: 

? a=2+0(7 A 30) 
%1 = 2 + 0(7 A 30) 
? sqrt(a) 
%2 = 4 + 5*7 + 4*7 A 2 + 5*7 A 4 + 4*7-5 + 5*7 A 6 + 4*7 A 7 + 2*7-8 + 
4*7 A 11 + 5 *7 A 12 + 5*7-13 + 6*7 A 14 + 4*7 A 15 + 5*7 A 16 + 5*7 A 17 + 
2*7 A 18 + 5*7 A 20 + 3 *7-21 + 4*7-22 + 3*7 A 25 + 7 A 26 + 7-27 + 
3*7-29 + 0(7-30) 
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The GP-PARI package is freely distributable and runs on many different 
kinds of computers. See http://www . parigp-home. del for more informa
tion. 

Of course, it is perfectly possible to implement p-adic arithmetic in any of 
the big "computer algebra" packages. I am aware of such an implementation 
in MAPLE, and I'm sure it has also been done on MATHEMATICA, MAGMA, 
and other packages. Of course, one can simulate p-adic arithmetic by working 
with congruences modulo high powers of p, but this can be ungainly. For 
example, when working modulo pn, most packages return an error if one 
tries to divide an expression by p. For a true p-adic approach, the division 
should be done, and the result treated as correct modulo pn-l. 

B.3 Other Books 

There are many other books that either deal with specific aspects of the 
theory or contain material that relates to one or another topic covered in this 
book. Here are the ones I like best, in no particular order. 

I guess I'll mention first the book that started it all: Theorie der Alge
braischen Zahlen, by Kurt Hensel, [Hen08]. Hensel had introduced p-adic 
numbers in various journal articles, but this is their first appearance in a 
book. For people who read German, this is worth a look, particularly to note 
the differences between Hensel's point of view and the one we have taken. 

Numbers, by a crowd of people headed by H.-D. Ebbinghaus, [EHH+91], 
is a delightful book about number systems in general. Its first part is called 
"From the Natural Numbers, to the Complex Numbers, to the p-adics." It is 
written in a very compressed style, and the various chapters can only survey 
the basics of each of the number systems, but reading them still is quite an 
enjoyable ride. There are two other parts: about real division algebras and 
about Conway's "surreal numbers." This one is definitely worth a look. 

Exercises in Number Theory, by the fictitious D. P. Parent ([Par84]' which 
is a translation of the 1978 French original) is a problem book which is really 
much more ambitious than its title suggests. Each chapter gives a compact 
introduction to one of the major areas of modern number theory and then 
presents the reader with problems (full solutions are included). The final 
chapter is called "p-adic Analysis." 

The best elementary treatment of the Hasse-Minkowski theorem is prob
ably the one in J.-P. Serre's A Course in Arithmetic, [Ser73]. This book 
includes a chapter on the basic structure of the p-adic numbers, from the 
point of view of "coherent sequences," and then goes on to develop the the
ory of quadratic forms and prove the Hasse-Minkowski theorem over Q. The 
second half of the book focuses on Analytic Number Theory, and may serve as 
an introduction to the (classical, rather than p-adic) theories of L-functions 
and modular forms. 
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The functional-analytic side of p-adic analysis is the focus of Analyse 
Non-Archimedienne, by A. F. Monna, [Mon70j, and of Non-Archimedian 
Functional Analysis, by A. C. M. van Rooij, [vR78j. By contrast, Koblitz's p
adic Analysis: a Short Course on Recent Work, [Kob80j, focuses on material 
which has played a big role in arithmetical algebraic geometry: the p-adic 
L-functions, Gamma function, regulators, and the various theorems relating 
them. 

Rigid Analytic Geometry is a difficult subject, but we should mention 
Non-Archimedean Analysis, [BGR84]' by S. Bosch, U. Giintzer, and R. Rem
mert, which tries to lay down a solid foundation for the subject. This is a very 
advanced book, but one which contains an enormous amount of information. 

These, of course, only scratch the surface, since an enormous amount of 
research has focused on p-adic methods and their application to number the
ory. Much of it has in fact not yet been put into books. Other parts have 
been published as monographs focusing on very specific material, such as Iwa
sawa's Lectures on p-adic L-functions, [Iwa72], Schottky Groups and Mumford 
Curves, by L. Gerritzen and M. van der Put, [GvdP80], B. Dwork's Lectures 
on p-adic Differential Equations, [Dwo82j, Volovich and Vladimirov's p-adic 
Analysis and Mathematical Physics, [VV94], A. Khrennikov's p-adic Valued 
Distributions in Mathematical Physics, [Khr94]' or my own! Arithmetic of 
p-adic Modular Forms, [Gou88j. There are also several books that collect pa
pers on related themes, such as [AST92j, [BP92]' or [MS94j. A good recent 
overview of the whole area is Mazur's article "The theme of p-adic variation" 
in [AALM99j. Our adventurous reader will have no trouble finding more and 
more to learn, and may soon be in the position to teach us something herself. 

lCould I resist a chance like this? 
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triangle inequality, 32 
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ultrametric inequality, 33 
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uniform continuity, 127, 129 
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universal properties, 67 
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unreasonable effectiveness, 33 

valuation ideals, 40 
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valuations, 26, 41 
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discrete, 39, 41, 60 
extending, 29, 60 
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value group of, 26, 41, 159 

valued fields, 33, 36, 44 
algebra, 39-41 
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non-archimedean, 36, 38, 51 
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Wilson's Theorem, 175 
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