
1. Week One

Let k be a finite field, and let q denote the number of elements in k. One of the main
objectives of this course is to study systems of polynomial equations over k. That is, let

fj(x1, . . . , xn) ∈ k[x1, . . . , xn] , 1 ≤ j ≤ r

be polynomials, and consider the system

fj(x1, . . . , xn) = 0 , for all 1 ≤ j ≤ r .

A typical problem is to estimate the number N of solutions to this system in kn. Obviously
one has the trivial estimate 0 ≤ N ≤ qn, but we hope to do better.

Another point of view is to consider a system of polynomial equations

Fj(x1, . . . , xn) = 0 , for all 1 ≤ j ≤ r ,

where Fj ∈ Z[x1, . . . , xn], 1 ≤ j ≤ r are polynomials with integer coefficients. One
approach to these so-called Diophantine equations is to reduce them to a system of con-
gruences

Fj(x1, . . . , xn) ≡ 0 (mod p) , for all 1 ≤ j ≤ r,

where p is a prime number. Clearly this is equivalent to studying the solutions to equations
over the finite field Fp = Z/pZ.

Example 1.1. Fix an integer n ≥ 1, and let Np denote the number of solutions in F2
q

to the equation xn + yn = 1. One can show that |Np − p| ≤ Cp1/2, for a constant C
not depending on p. More generally, if X is the irreducible variety defined by the system
fj(x1, . . . , xn) = 0, for all 1 ≤ j ≤ r, then a theorem of Lang and Weil asserts that

|Np − pdim(X)| ≤ Cpdim(X)−1/2 .

Notice that this estimate gets better as p gets larger. But for small p, depending on
the constant C, this estimate might be terrible, even worse than 0 ≤ Np ≤ pn! This
is unfortunate, because in applications (coding theory, cryptography, finite geometry,
combinatorics, etc.) one may want good bounds for small p, in which case the Lang-Weil
estimate is of no use.

1.1. Basic Facts About Finite Fields. As before, let k be a finite field with q elements.
Since 1 ∈ k we have the obvious map Z → k (n 7→ n · 1). This map can’t be injective,
since k is finite, and therefore its kernel is pZ for some prime number p. (We know the
kernel is prime because k has no zero-divisors.) We call p the characteristic of k. So we
have an inclusion Z/pZ ↪→ k, which makes k into a Z/pZ-vector space. Thus it has a
dimension, say m, where 1 ≤ m < ∞. We conclude that q = pm, and as Z/pZ-vector
spaces (and in particular as additive groups) we have k ' (Z/pZ)m.

Theorem 1.2. For every prime p and integer m ≥ 1, there exists a finite field with pm

elements. Moreover, any two such fields are isomorphic. (We therefore denote by Fq the
unique finite field with q elements.)

1



Proof. Let F be an algebraic closure of the field Z/pZ. Then clearly all finite fields of
characteristic p are contained in F , since they are finite, and therefore algebraic, extensions
of Z/pZ. Suppose we have k ⊆ F , where #k = q. Then #k∗ = q−1, and so by Lagrange’s
theorem we have αq−1 = 1 for all α ∈ k∗. Thus αq = α for all α ∈ k. This argument
shows that every element of k is a root of the polynomial f(x) = xq − x. Since there are
at most q roots to this polynomial, k must represent all of its roots. In other words, we
have

k = {α ∈ F | αq = α} .
Since the right hand side of this equality depends only on the prime p and the number q,
this shows uniqueness (up to isomorphism.)

To show existence, we only need to show that given a prime power q = pm, the set
k = {α ∈ F | αq = α} is a field with q elements. Since k is the set of roots in F of the
polynomial f(x) = xq−x, we know that #k ≤ q. On the other hand, f ′(x) = qxq−1−1 =
−1 6= 0 in F . Therefore f has distinct roots, forcing #k = q. To show that k is a
field, we first observe that 0, 1 ∈ k. If a, b ∈ k, then we have (ab)q = aqbq = ab, and
(a−1)q = (aq)−1 = a−1. Also,

(−a)q = (−1)qaq = (−1)qa =

{
−a if q is odd

a if q is even
= −a .

Finally, we need to show that (a+ b)q = aq + bq = a+ b, which follows from the following.

Lemma 1.3. If K is field of characteristic p, then for any m ≥ 1 and any x, y ∈ K,

(x+ y)p
m

= xp
m

+ yp
m

.

Proof. We have

(x+ y)p =

p∑
i=0

(
p

i

)
xiyp−i = xp + yp ,

since p|
(
p
i

)
whenever 1 ≤ i ≤ p− 1. We proceed by induction on m. Assume the truth of

the lemma for exponent m− 1, and we have

(x+ y)p
m

= ((x+ y)p)p
m−1

= (xp + yp)p
m−1

= (xp)p
m−1

+ (yp)p
m−1

= xp
m

+ yp
m

by the induction hypothesis.

The theorem follows immediately from this lemma.

1.2. Constructing Finite Fields. The proof of the above theorem is slick, but it doesn’t
really lend itself to actually getting one’s hands on the field Fq and computing in it. The
most concrete way to represent the field Fq, where q = pm, is to find an irreducible
polynomial g(x) ∈ Fp of degree m. In that case, it is plain to see by uniqueness that we
must have

Fq ' Fp[x]
/

(g(x)) .
2



(One has to show that the right hand side is a field. Recall that all primes are maximal
in a Euclidean ring, and that Fp[x] is Euclidean.) For example, x3 + x + 1 is irreducible
over F2 since it’s a cubic with no roots, and therefore F8 ' F2[x]

/
(x3 + x+ 1).

Remarks 1.4. Suppose q is a prime power and d ≥ 1 is in integer. Then for α ∈ Fq we

have αq
d

= α(q·q·q···q) = α. Thus Fq ⊆ Fqd . Conversely, if Fpm ⊆ Fpn , then pn = (pm)d

for some integer d, since Fpn is a Fpm-vector space. Therefore m|n. This argument shows
that for any prime p, we have the rule

Fpm ⊆ Fpn if and only if m | n .
Also, since any finite field Fq is the splitting field of xq − x, it is Galois over the prime

field Fp. Therefore any extension of finite fields Fqd/Fq is Galois.
By the above lemma, the map α 7→ αq is an automorphism of Fqd fixing Fq. This

element has order d in the Galois group. (To see this, let r be its order. Then α 7→ αq
r

is the identity on Fqd . Thus all qd elements of Fqd are roots of the polynomial xq
r − x.

This is a contradiction unless d ≤ r. Since r | [Fqd : Fq] = d, this shows r = d.) Since
d = [Fqd : Fq], we have shown that Gal(Fqd/Fq) is cyclic, generated by the map α 7→ αq.

The last basic fact about finite fields that we will need is the following theorem, which
determines the structure of their multiplicative groups. The proof will make use of the
classification theorem of finite abelian groups.

Theorem 1.5. F∗q is cyclic.

Proof. We know that F∗q is a finite abelian group, so it has the shape

F
∗
q ' (Z/d1Z)⊕ (Z/d2Z)⊕ · · · ⊕ (Z/drZ)

where d1 | d2 | · · · | dr and d1 > 1. If r > 1, then there is a copy of Z/d1Z inside Z/d2Z,
since d1 | d2. Thus there are (at least) two cyclic subgroups of F∗q of order d1 which
intersect to the identity. Therefore there are at least 2d1 − 1 elements of F∗q which are

roots of the polynomial xd1 − 1. This is contradiction, since d1 < 2d1 − 1 and a degree d1

polynomial can have at most d1 roots in any field. Therefore r = 1.

We have the following

Corollary 1.6. For any n ≥ 1,

Sn =
∑
x∈Fq

xn =

{
0 if (q − 1) - n

−1 if (q − 1) | n .

Proof. Notice that we can omit the zero term in the sum Sn, so that if (q − 1) | we have

Sn =
∑
x∈F∗q

xn =
∑
x∈F∗q

1 = q − 1 = −1 in Fq .

On the other hand, if (q − 1) - n, we let F∗q have generator g. Then gn 6= 1, so

Sn =

q−2∑
i=0

(gi)n =

q−2∑
i=0

(gn)i =
(gn)q−1 − 1

gn − 1
=

1− 1

gn − 1
= 0 .
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We will use the sum Sn in the following

Lemma 1.7. Let f ∈ Fq[x1, . . . , xn], where char(Fq) = p, and let N(f) denote the num-
ber of solutions to the equation f(x1, . . . , xn) = 0 in Fnq . Write

f(x1, . . . , xn)q−1 =
∑

ai1,i2,... ,inx
i1
1 x

i2
2 · · ·xinn .

Then the following congruence holds:

N(f) ≡ (−1)n+1
∑

i1,i2,...in>0
(q−1)|i1,i2,... ,in

ai1,i2,... ,in (mod p) .

Aside 1.8. A priori it is not even obvious that the right hand side of this congruence is
an element of the prime field Fp.

Proof. If (α1, . . . , αn) ∈ Fnq , then

1− f(α1, . . . , αn)q−1 =

{
1 if f(α1, . . . , αn) = 0

0 if f(α1, . . . , αn) 6= 0 .

Thus, in a sense, 1− f q−1 is the characteristic function of the zero set of f . Therefore

N(f) ≡
∑

(α1,... ,αn)∈Fnq

(
1− f(α1, . . . , αn)q−1

)
(mod p)

≡ −
∑

(α1,... ,αn)∈Fnq

f(α1, . . . , αn)q−1 (mod p)

≡ −
∑

(α1,... ,αn)∈Fnq

∑
i1,... ,in

ai1,i2,... ,inα
i1
1 α

i2
2 · · ·αinn (mod p)

≡ −
∑
i1,... ,in

ai1,i2,... ,in

{ ∑
(α1,... ,αn)∈Fnq

αi11 α
i2
2 · · ·αinn

}
(mod p) .

Factoring the inner sum, we get

∑
(α1,... ,αn)∈Fnq

αi11 α
i2
2 · · ·αinn =

n∏
j=1

(∑
αj∈Fq

α
ij
j

)

=
n∏
j=1

(
Sij

)
=

{
(−1)n when ij > 0 and (q − 1) | ij for all j

0 otherwise .

Plugging this in to the above calulation for N(f), we are done.
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1.3. Application I: The Hasse Invariant. Let q a power of the odd prime p, let
a, b ∈ Fq, and let f(x, y) = y2 − x3 − ax− b. Then

(y2 − x3 − ax− b)q−1 =

q−1∑
j=0

(
q − 1

j

)
y2j(−x3 − a1x− b)q−1−j .

By the lemma, the only terms of this sum that will contribute modulo p to N(f) are
j = (q − 1)/2 and j = (q − 1). But the term

(
q−1
q−1

)
y2(q−1)(−x3 − ax− b)0 has no x terms

in it, so it doesn’t contribute either. Observing that

deg
(

(−x3 − ax− b)(q−1)/2
)

= 3(q − 1)/2 < 2(q − 1) ,

we see that only the xq−1 term in the expansion of (−x3 − ax − b)(q−1)/2 will show up
in the sum for N(f). Letting A be the coefficient of xq−1 in (−x3 − ax − b)(q−1)/2, we
conclude that

N(f) ≡ (−1)(q−1)/2

(
q − 1

(q − 1)/2

)
A (mod p)

≡ A (mod p) .

This residue class A is called the Hasse invariant of the elliptic curve f(x, y) = 0, defined
over Fq.

1.4. Application II: The Chevalley-Warning Theorem. This result, originally con-
jectured by Artin, allows one to infer, modulo p, the number of solutions to certain
equations. As usual, we let Fq be a finite field of characteristic p, f ∈ Fq[x1, . . . , xn], and
we denote by N(f) the number of solutions in Fnq of f(x1, . . . , xn) = 0.

Theorem 1.9. If deg(f) < n, then N(f) ≡ 0 (mod p) .

Proof. The idea is to show that the sum in the lemma is the empty sum, and therefore zero.
Write f(x1, . . . , xn)q−1 =

∑
ai1,i2,... ,inx

i1
1 x

i2
2 · · ·xinn , and suppose the coefficient ai1,i2,... ,in 6=

0 qualifies for inclusion in the sum in the conclusion of the lemma. That is, it satisfies
ij > 0 and (q−1)|ij for all j. Then ij ≥ q−1 for all j, and therefore i1 +· · ·+in ≥ n(q−1).
Then we have

n(q − 1) ≤ i1 + · · ·+ in ≤ deg(xi11 x
i2
2 · · ·xinn ) ≤ deg(f q−1) = (q − 1) deg f .

We conclude that n ≤ deg f , a contradicion of the hypothesis. Therefore the sum in the
conclusion of the lemma is the empty sum.

Remarks 1.10. An easy consequence of the Chevalley-Warning theorem is that, if deg f <
n and N(f) ≥ 1, then N(f) ≥ p. In particular, since homogeneous polynomials always
have the zero solution, the theorem will provide some non-zero solutions. For exam-
ple, applying the theorem to an irreducible quadratic homogeneous polynomial in three
variables, we find that all conics have rational points over a finite field (projectively).

Let f(x, y) = x2+xy+y2 ∈ Fq[x, y]. Since the degree is equal to the number of variables,
this polynomial narrowly misses the hypothesis of the theorem. And indeed, by inspection
we see N(f) = 1 6≡ 0 (mod 2). Actually, f factors as f(x, y) = (x+ wy)(x+ w2y) where
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w ∈ F4 satisfies w2 + w + 1 = 0. Even though this is a trivial example, it suggests a
generalization.

Given a finite field Fq and an integer n ≥ 2, we will construct a polynomial f(x1, . . . , xn) ∈
Fq[x1, . . . , xn], of degree n, such that N(f) = 1. This will show that the Chevalley-
Warning theorem is sharp, in the sense that the requirement deg f < n in the hypothesis
cannot be weakened. Let α1, . . . , αn be a basis for Fqn over Fq. For each 1 ≤ i ≤ n, let

α
(1)
i , . . . , α

(n)
i be the Galois conjugates of αi in the field extension Fqn

/
Fq. We define

hn(x1, . . . , xn) =
n∏
j=1

(
α

(j)
1 x1 + · · ·+ α(j)

n xn

)
.

By the action of Galois, we see that hn has coefficients in Fq. Suppose f(a1, . . . , an) = 0.

Then α
(j)
1 a1+· · ·+α(j)

n an = 0 for some j. But since the α1, . . . , αn are linearly independent

over Fq, so are the conjugates α
(j)
1 , . . . , α

(j)
n . Therefore a1 = a2 = · · · = an = 0. So the

only solution is the zero solution, whereby N(hn) = 1.

2. Week two

From last time,

Theorem 2.1 (Chevalley–Warning). If f(x1, . . . , xn) ∈ Fq[x1, . . . , xn] for q = pm (p
prime), and deg(f) < n, then #{(a1, . . . , an) ∈ Fnq | f(a1, . . . , an) = 0} ≡ 0 (mod p).

Recall that we showed that for all q and n ≥ 1, there exist homogeneous polynomials
hn(x1, . . . , xn) ∈ Fq[x1, . . . , xn], with deg(hn) = n, such that the only common solution
to the hn’s in Fnq is (0, . . . , 0). Hence, the requirement that deg(f) < n in the result really
is necessary.

Corollary 2.2. If f1, . . . , fk ∈ Fq[x1, . . . , xn] with

k · max
1≤i≤k

deg(fi) < n ,

and such that fi(0, . . . , 0) = 0 for all i, then there exists (a1, . . . , an) ∈ Fq \ {(0, . . . , 0)}
such that fi(a1, . . . , an) = 0 for i = 1, . . . , n.

In fact, one can replace the hypothesis that fi(0, . . . , 0) = 0 for all i to the assumption
that the fi’s have any common zero, as it can be changed to (0, . . . , 0) by a linear change
of variables. So the Corollary states that if the fi’s have one common zero in Fnq , then
they must have another.

Proof. Let f = hk(f1, . . . , fk) (for the function hk discussed above). Observe that f is
the sum of monomials of the form c · f1

i1 · · · fkik , where i1 + . . .+ ik = deg hk = k, so the
monomial has degree = i1 deg f1 + . . .+ ik deg fk ≤ (i1 + . . .+ ik) max(deg fi) < n, hence
deg(f) < n.

So by the Chevalley–Warning theorem, there exists (a1, . . . , an) ∈ Fq \ {(0, . . . , 0)}
such that f(a1, . . . , an) = hk(f1(a1, . . . , an), . . . , fk(a1, . . . , an)) = 0; the properties of
hk thus imply that fi(a1, . . . , an) = 0 for all i. (Indeed, there exist at least p − 1 such
(a1, . . . , an)’s.)
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We will next discuss systems of equations of low degree. The solution of degree 1
systems follows from linear algebra. The next case is degree 2:

2.1. Conics. Let f(x, y) ∈ Fq[x, y] be of degree 2. We want to know N(f) = #{(a, b) ∈
F

2
q | f(a, b) = 0}. There are three cases to consider.

2.1.1. Case One. Suppose f factors over Fq; say f(x, y) = L1(x, y) ·L2(x, y), for L1, L2 ∈
Fq[x, y] of degree 1. Now, f = 0 iff L1 = 0 or L2 = 0, so N(f) = 2q or 2q − 1, depending
on whether the sets {L1 = 0} and {L2 = 0} intersect or not.

2.1.2. Case Two. Say f = L1 ·L2, with deg(Li) = 1, but L1, L2 not having coefficients in
Fq. For all σ ∈ G = Gal(Fq/Fq), f = fσ = Lσ1L

σ
2 . But polynomial rings are UFD’s, thus

{L1, L2} = {Lσ1 , Lσ1} (actually, the Lσi ’s may be off from L1 or L2 by a constant factor;
this can be avoided without loss of generality by, say, scaling the Li’s to make certain
coefficients equal to 1).

Hence, G acts on the set {L1, L2}, giving a representation ϕ : G→ S2. The map cannot
be trivial, as otherwise we would have Li

σ = Li for all σ, implying Li ∈ Fq[x, y] (note

that it also follows that L1 6= L2). Hence (kerϕ) will be of the form Gal(Fq/k), for some

field k ⊇ Fq with [G : Gal(Fq/k)] = 2, thus [k : Fq] = 2. But the only degree 2 extension
of Fq is Fq2 , so we conclude that L1, L2 ∈ Fq2 [x, y].

Now suppose P ∈ {L1 = 0}\{L2 = 0}, and choose a σ ∈ G\ker(ϕ). Then P σ ∈ {L2 =
0}, so P σ 6= P and thus P 6∈ F2

q. Therefore N(f) = #({L1 = 0} ∩ {L2 = 0}). However,
since L1 6= L2 (as remarked above), the lines {L1 = 0} and {L2 = 0} intersect in at most
one point, and we conclude that N(f)=0 or 1.

Definition 2.3. A polynomial f ∈ k[x1, . . . , xn] is irreducible if whenever f = g · h (for
g, h ∈ k[x1, . . . , xn]) then g or h ∈ k. We say f is absolutely irreducible if it is irreducible
in k[x1, . . . , xn].

2.1.3. Case Three. Suppose f is absolutely irreducible. Let F (x, y, z) = z2f
(
x
z
, y
z

)
, the

homogenization of f . Why? Because now F is a polynomial of degree 2 in 3 variables,
and we may apply the Chevalley–Warning Theorem. As F (0, 0, 0) = 0, there exists
(a, b, c) ∈ F3

q \ {(0, 0, 0)} such that F (a, b, c) = 0. If c 6= 0, then f
(
a
c
, b
c

)
= 0, and we have

a point P on the curve {f = 0}. (If c = 0, then, say, a 6= 0, and we could instead use
F
(
1, b

a
, c
a

)
= 0 and look at g(x, y) = F (1, x, y); as we will be looking at projective points

in a moment anyway, this won’t matter.)
Now that we have a point, we can consider lines with “rational slope” through that

point and find their intersections with the curve. Without loss of generality, our point P
is (0, 0). Now, say

f(x, y) = ax+ by + cx2 + dxy + ey2.

It follows from absolute irreducibility that there is a unique tangent line at P , namely
ax+ by = 0, which intersects the curve only at P . If we do the linear change of variables
ax+ by → x, ux+ vy → y for some u, v such that av − bu 6= 0 (which will always exist),
then our curve becomes

x+ γx2 + δxy + εy2 = 0,
7



and the tangent line has become x = 0. All non-tangent lines through P on this curve
have the form y = tx for some t ∈ Fq, so there are q of these. Each of the rational points
6= P on the curve, even the points at infinity, lies on exactly one such line, and conversely,
each line intersects the curve in exactly one point besides P . Hence the total number of
(projective) points is q + 1. Indeed, for a fixed t,

f(x, tx) = x+ (γ + δt+ εt2)x2,

so the roots are x = 0 (corresponding to P ) and x(t) := −1
γ+δt+εt2

. The points at infinity

correspond to the zeros of the denominator, hence there are 0, 1, or 2 of these. In summary,
for each t ∈ Fq such that γ + δt+ εt2 6= 0, we get a point (x(t), t · x(t)) 6= P on the curve.
Hence N(f) = q − 1, q, or q + 1 (depending on the discriminant of γ + δt+ εt2).

Projective Spaces

Let k be a field, and n a non-negative integer. We define n-dimensional projective space
over k, denoted Pn(k), as follows. Put an equivalence relation on kn+1 \ {(0, . . . , 0)} by
saying (a0, . . . , an) ∼ (b0, . . . , bn) if and only if there exists λ ∈ k∗ such that ai = λbi for
all i. Then

P
n(k) =

kn+1 \ {(0, . . . , 0)}
∼

Equivalently, Pn(k) is the set of all lines through the origin in kn+1. We represent the
equivalence class containing (a0, . . . , an) by (a0 : . . . : an).

Remarks. We note the following:

• If we have (a0, . . . , an) with ai = 0, then bi = 0 for any (b0, . . . , bn) ∼ (a0, . . . , an).
So we can unambiguously talk about whether or not ai = 0 in (a0 : . . . : an).
• Consider U0 = {(a0 : . . . : an) ∈ Pn(k) | a0 6= 0}. We have a well-defined map:

U0 −→ kn

(a0 : . . . : an) 7−→
(a1

a0

: . . . :
an
a0

)
It has the inverse (a1, . . . , an) 7→ (1 : a1 : . . . : an), making it a bijection. Also, we
have the map:

P
n \ U0 −→ P

n−1

(0 : a1 : . . . : an) 7−→ (a1 : . . . : an)

which is also clearly a bijection. Hence, we can decompose Pn:

P
n(k) = U0 ∪ (Pn \ U0)xy xy

kn P
n−1

Continuing this, we see that Pn(k) = kn ∪ kn−1 ∪ . . . ∪ k0 (where k0 = P
0(k) = one

point); hence #Pn(k) = qn + qn−1 + · · ·+ 1 = qn+1−1
q−1

, if k = Fq.
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Consider the particular case of P1:

P
1 = U0 ∪ {∞}xy xy

k “point at infinity”

If we have a rational function f(x) ∈ k(x), we may think of f(x) as an honest function
f : P1 → P

1; indeed, write f(x) = A(x)/B(x), where gcd(A,B) = 1 (this makes sense as
k[x] is a PID). Then for α ∈ k,

f(α) =

{
A(α)/B(α) if B(α) 6= 0,

∞ if B(α) = 0

and

f(∞)

(
= “ lim

x→0

A(1/x)

B(1/x)
”

)
=


∞ if deg(A) > deg(B)

0 if deg(A) < deg(B)

a0/b0 if deg(A) = deg(B)

(where a0, b0 are the leading coefficients of A, B.)
Now consider P2 :

P
2 = U0 ∪ P

1xy xy
k2 “line at infinity”

Definition 2.4. A line in P2 is a set

L = {(a0 : a1 : a2) ∈ P2(k) | α0a0 + α1a1 + α2a2 = 0}

for some α0, α1, α2 ∈ k, not all = 0.

Note that this is well-defined. Also, note that scaling (α0, α1, α2) by some element of
k∗ doesn’t change L; hence L depends only on (α0 : α1 : α2).

Consider k2 to be embedded into P2(k) as U0. Then L ∩ k2 is the set {(x, y) ∈ k2 |
α0 +α1x+α2y = 0}, which is the usual kind of line in the plane, except when α1 = α2 = 0,
in which case L ∩ k2 = ∅, and L is the line at infinity (P2 \ U0).

Exercise 2.1. If L1 6= L2 are lines in P2, then L1 ∩ L2 is a point.

Exercise 2.2. Show that the “dual map”{
(a0 : a1 : a2) ∈ P2(k)}

∣∣∑αiai = 0
}
−→ (α0 : α1 : α2) ∈ P2(k)

is a bijection between P2 and the set of lines in P2. (Observe that under this duality, the
statement in Exercise 1 corresponds to the statement that between any two points, there
exists a unique line.)
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Let f(x) ∈ k[x0, . . . , xn] be a homogeneous polynomial. For all λ ∈ k, f(λa0, . . . , λan)
= λdeg ff(a0, . . . , an) hence the condition f(a0, . . . , an) = 0 depends only on (a0 : . . . :
an) ∈ Pn(k). So given homogeneous polynomials (perhaps of different degrees) f1, . . . , fm ∈
k[x0, . . . , xn], it makes sense to define the set of common zeros in Pn:

X = {(a0 : . . . : an) ∈ Pn(k) | fi(a0, . . . , an) = 0 for all i}.

Definition 2.5. A projective conic is the set of zeros in P2(k) of a homogeneous, degree
2 polynomial in k[x0, x1, x2].

What is the set of all lines through a given point (a0 : a1 : a2) ∈ P2? Well, the set
of lines L = {(x0 : x1 : x2) ∈ P2 | α0x0 + α1x1 + α2x2 = 0} containing (a0 : a1 : a2)
corresponds to the set of points (α0 : α1 : α2) such that α0a0 + α1a1 + α2a2 = 0, which is
itself a line! That is, the set of lines through a given point of P2 is a line in the dual P2.

Remarks. Given two distinct lines L1 and L2 and a point P0 belonging to neither line, we
obtain a bijection f : L1 → L2 by drawing lines through P0: f(P ) = L2 ∩P P0, f

−1(Q) =
L1 ∩QP0

Theorem 2.6. Suppose X is an absolutely irreducible projective conic, and we have a
point P0 ∈ X(k). Then X(k) is in bijection with P1(k) by the map (composed with the
dual map):

P ∈ X(k) 7→

{
the line PP0 if P 6= P0

the “tangent line” at P0, if P = P0

=

(
∂f

∂x0

(P0) :
∂f

∂x1

(P0) :
∂f

∂x2

(P0)

)
.

Remarks. We observe the following:

• It is unnecessary to assume in the theorem that f is smooth at P0 (i.e. that(
∂f
∂x0

(P0), ∂f
∂x1

(P0), ∂f
∂x2

(P0)
)
6= (0, 0, 0), making the tangent line well-defined), since

if a conic isn’t smooth, then it is the union of two lines, and hence not absolutely
irreducible.
• Observe that the tangent line at P0 actually does pass through the point P0, by

Euler’s identity : For homogeneous f ,

x0
∂f

∂x0

+ · · ·+ xn
∂f

∂xn
= (deg f) · f .

• The theorem needs to have a point on X(k) in order to work. So although the
theorem is true over any field, it is particularly nice over finite fields, as then the
Chevalley–Warning theorem gives us the existence of a point.

Suppose k is algebraically closed, and f, g ∈ k[x0, x1, x2] are homogeneous polynomials
without a common factor. Let δP to be the intersection multiplicity of f and g at the
point P ∈ P2(k); if we do a linear change of variables so that P becomes (1 : 0 : 0), this
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may be defined as the dimension of a k-vector space:

δP = dimk
k[[x, y]]

(f(1, x, y), g(1, x, y))
.

(In particular, if f(P ) = g(P ) = 0 and f and g are both smooth at P , and the tangents
to f and g at P are different, then δP = 1.) For convenience, define δP = 0 if f(P ), g(P )
are not both zero. Then we have:

Theorem 2.7 (Bézout’s Theorem). For f , g as above,∑
P∈P2(k)

δP = deg(f) · deg(g) .

3. Week Three

Proposition 3.1. Suppose we have

f(x1, . . . , xn) ∈ Fq(x1, . . . , xn) f 6= 0, deg f = d .

Then

N(f) = #{(a1, . . . , an) ∈ Fq|f(a1, . . . , an) = 0} ≤ ndqn−1.

We will look at solutions in n space, slicing it with hyperplanes. The proof is by
induction on n.

Proof. In the case n = 1, we have f(x1) = 0, deg f = d so N(f) ≤ d = d · 1 · q1−1 and the
proposition is true for n = 1. Now assume the bound for n− 1. For each a ∈ Fq, look at
fa = f(a, x2, . . . , xn) = 0.

N(f) =
∑
a∈Fq

N(fa)

where deg fa ≤ d for all a. If fa 6= 0, we can apply induction and get

N(fa) ≤ d(n− 1)qn−2.

If fa = 0, then N(fa) = qn−1. Now, fa = 0 if and only if (x1 − a)|f , but this can happen
for at most d values of a (since as a polynomial in x1, deg f ≤ d). Then

N(f) =
∑
a∈Fq

N(fa) =
∑

fa 6=0,a∈Fq

N(fa) +
∑

fa=0,a∈Fq

N(fa) ≤ d(n− 1)qn−2q + dqn−1 = dnqn−1

One would expect a bound of the type dqn−1. If f is a product of d disjoint hyperplanes,

f(x1, . . . , xn) = (x1 − α1) . . . (x1 − αd) ,

then we reach the bound; N(f) = dqn−1.
For n = 2, the proposition gives N(f) ≤ 2dq. We will do better:

Proposition 3.2. If f(x, y) ∈ Fq(x, y), f 6= 0, deg f = d, then N(f) ≤ d(q + 1) + 1.
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Proof. Without loss of generality, we assume N(f) > 0 and take a point P = (a, b) ∈ Fq
with f(a, b) = 0, and look at the lines through (a, b). There are q + 1 such lines. Let
L1, . . . , Lk be the lines through (a, b) such that the equation of Li divides f . l1 . . . lk|f so
f = l1 . . . lkg, deg g = d− k.

N(f) = 1 + (q − 1)k + #(c, d) ∈ F2
q \ ∪li|g(c, d) = 0 .

Where 1 counts the point P and (q − 1)k count the q − 1 solutions on each line. If l is a
line through P with l 6= li, i = 1, . . . , k then

#l ∩ {g = 0} ≤ d− k.

N(f) ≤ 1 + (q − 1)k + (q + 1− k)(d− k)

= 1 + (q − 1)k + (q + 1)d− (q + 1)k − kd+ k2

= 1 + (q + 1)d− 2k + k2 − dk ≤ 1 + (q + 1)d

because 0 ≤ k ≤ d.

Exercise 3.1. If f is irreducible, show that N(f) ≤ (q + 1)(d− 1).

Example 3.3. (The Hermitian Curve) The curve over Fq2 defined by

yq + y − xq+1 = 0

has degree q + 1, is absolutely irreducible (apply Eisenstein to it as a polynomial in x, in
¯

Fq[y] using the prime y), and N(f) = q3 over Fq2 . That is, N(f) = (deg f − 1) ·#Fq2 .

Proof. Consider the Trace and the Norm,

TrFqn/Fq(α) = α + αq + · · ·+ αq
n−1

NFqn/Fq(α) = α · αq · · · · αqn−1

= α
qn−1
q−1

Lemma 3.4. (1) For all a ∈ Fq, #{α ∈ Fqn|Tr(α) = a} = qn−1.

(2) For all a ∈ F∗q, #{α ∈ F∗qn|N(α) = a} = qn−1
q−1

.

Given α ∈ Fq2 , αq+1 = N(α) ∈ Fq. There are q elements β ∈ Fq2 such that β2 + β =
Tr(β) = N(α) (by the Lemma), so we get q2 · q = q3 points (α, β) on f = 0.

Proof. (1) Trace is a homomorphism under addition. Assertion (1) is equivalent to saying
Trace is surjective and #ker Tr = qn−1. Now,

ker Tr = {α ∈ Fqn|α + αq + · · ·+ αq
n−1

= 0} ⊆ {α ∈ F̄q|α + αq + · · ·+ αq
n−1

= 0}.

The last set has cardinality qn−1 because x+ xq + · · ·+ xq
n−1

is a seperable polynomial of
degree qn−1. So, #ker Tr ≤ qn−1. Im Tr ⊆ Fq so #Im Tr ≤ q.

The result follows since # ker Tr # Im Tr = qn (because 0→ ker Tr→ Fqn → Im Tr→ 0
is exact).

The Proof of (2) is similar.
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Remark. There is a change of variables on the hermitian curve that gives xq+1 +yq+1 = 1.

Proposition 3.5. If f ∈ Fq(x, y) is of degree d, and is irreducible, but not absolutely
irreducible, then

N(f) ≤ d2

4
.

Proof. Take an absolutely irreducible factor, g, of f over F̄q; f = gh. Let σ be an element
of the galois group, σ 6= 1, such that gσ 6= g. Such a σ exists because g /∈ Fq(x, y). Now,
apply σ to f = gh:

f = fσ = gσ · hσ

so gσ is also a factor of f . Let k = g ·gσ . . . gσr−1
for some minimal r with gσ

r
= g. kσ = k

so k ∈ Fq(x, y), and since k|f , we get f = k = g · gσ . . . gσr−1
.

Suppose f(a, b) = 0 for some (a, b) ∈ Fq(x, y). Then

r−1∏
i=0

gσ
i

(a, b) = 0 .

For some i, 0 = gσ
i
(a, b) = g(a, b)σ

i
which implies g(a, b) = 0, so gσ(a, b) = 0. Note

that deg g = deg gσ; all galois conjugates have the same degree, and there are r of them.
g is irreducible, so that g and gσ have no common factor, so by Bezout, there are at most
d2

r2 ≤ d2

4
common solutions.

3.1. Basic Notions from Algebraic Geometry. Let k = Fq, the algebraic closure of
Fq.

Suppose f1, . . . , fm ∈ k[x1, . . . , xn]. Let X be the set

X = {(a1, . . . , an) ∈ kn|fj(a1, . . . , an) = 0j = 1, . . . ,m} .
This is called an algebraic set. Let

I(X) = (f1, . . . , fm) ⊆ k[x1, . . . , xn]

be the ideal generated by f1, . . . , fm. For an ideal I in k[x1, . . . , xn], define the radical of

I as the ideal
√
I = {g ∈ k[x1, . . . , xn] | ∃r ≥ 1, gr ∈ I}.

Theorem 3.6 (Hilbert Nullstellensatz). Suppose X is an algebraic set defined by the
ideal I ⊆ k[x1, . . . , xn]. Then

{f ∈ k[x1, . . . , xn] | f(a1, . . . , an) = 0,∀(a1, . . . , an) ∈ X} =
√
I.

This is true for any algebraically closed field.
If an ideal satisfies I =

√
I we call it a radical ideal. RX = k[x1, . . . , xn]/I(X) is called

the coordinate ring of X.

Definition 3.7. An algebraic set X is irreducible if X = Y ∪ Z, Y, Z algebraic sets,
implies Y ⊆ Z or Z ⊆ Y .

Fact 3.8. X is irreducible if and only if I(X) is a prime ideal if and only if RX is an
integral domain.
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Fact 3.9. Every algebraic set is a finite union of irreducible algebraic sets in a unique
way. Those irreducible algebraic sets are called components of X.

Definition 3.10. An irreducible algebraic set is called an algebraic variety.

More precisely, it is an affine algebraic variety, as we are working in kn (affine space).
Later we will also consider projective space.

For X irreducible, KX , the field of fractions of RX , is called the function field of X.

Definition 3.11 (Dimension Definition 1). Suppose X is an algebraic variety. Then
dimX is the transcendence degree of KX over k.

Example 3.12.

X ⊆ k2, I = (f), X = {f(x, y) = 0} RX = k[x, y]/(f(x, y))

KX = k(x, y) subject to f(x, y) = 0. X has dimension 1 because x and y are related by
f(x, y) = 0.

If we let d = dimX, KX is a finite extension of k, KX = k(t1, . . . , td) for some alge-
braically independent t1, . . . , td.

Definition 3.13 (Dimension Definition 2). For X an algebraic variety, dimX ≥ d if
there exist Y0 $ Y1 $ · · · $ Yd = X where the Y ′i s are algebraic varieties.

We state the following without proof:

Fact 3.14. Definition 3.11 and Definition 3.13 are equivalent.

If X is defined over Fq then #X(Fq) should be roughly of size qd where d = dimX. We
will later prove that if X is an absolutely irreducible algebraic variety, then

lim
n→∞

log #X(Fqn)

n log q
= d .

Definition 3.15. Suppose X is an algebraic variety defined by f1 = f2 = · · · = fm = 0.
Given a point x ∈ X we say X is smooth at x if the rank rk( ∂fi

∂xj
(x)) = n − dimX. In

this case, ker( ∂fi
∂xj

(x)) is called the tangent space to X at x. Finally, X is smooth if it is

smooth at x for all x ∈ X.

Example 3.16.
f(x, y) ∈ k2, f(x, y) = 0, f(0, 0) = 0

X is smooth at (0, 0) if and only if

(
∂f

∂x
(0, 0),

∂f

∂y
(0, 0)) 6= (0, 0) .

Example 3.17.

f(x, y) = y2 − (x3 + x2)

∂f

∂x
= −3x2 − 2x

∂f

∂y
= 2y
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This is not smooth; both partials vanish at (0, 0). Geometrically, the curve has a node at
(0, 0).

Example 3.18.

f(x, y) = y2 − x3

∂f

∂x
= −3x2

∂f

∂y
= 2y

Again, this is not smooth; both partials vanish at (0, 0). Geometrically, this curve has a
cusp at (0, 0).

4. Week Four

4.1. Zeta Functions. We first introduce some necessary notation. We will write An

to denote n-dimensional affine space. So An(k) will be kn for any field k. Let X be
an algebraic variety defined over Fq in An. This means that X is defined by an ideal

(f1, f2, ..., fm) in Fq[x1, x2, ..., xn], where f1, f2, ..., fm ∈ Fq[x1, x2, ..., xn]. Note that since
X is an algebraic variety, we are already assuming that the ideal is prime. Also, we need
to consider the algebraic closure Fq in order to have absolute irreduciblity, but we are
really only concerned with Fq.

We can think of X as the set of solutions over Fq to the system of equations fj = 0,
j = 1, 2, ...,m. So, for any field k containing Fq, we will denote by X(k) the set

{(a1, a2, ..., an) ∈ kn|fj(a1, a2, ..., an) = 0 1 ≤ j ≤ m} .

For instance, X(Fq) is the set of Fq-rational points of X. Recall that our purpose is to
study the size of the set and notice that the geometry influences the arithmetic. Hence,
we can also look at X(Fq2), X(Fq3), etc. and see if the infinite collection of finite fields
tells us something about the variety X. For this we will make use of the following item.

Definition 4.1. The Zeta function of X over the field Fq is the formal power series

ZX(t) = exp
( ∞∑
r=1

#X
(
Fqr
)tr
r

)
∈ Q[[t]] .

We note that 0 ≤ #X(Fq) ≤ qrn, which tells us that the series is convergent for
|t| < q−n, but this is not terribly important for our purposes. Also, we mention that the
same definition can be used if we take the algebraic variety X to be in the projective
space Pn.
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Example 4.2. X = An. We know that #An(Fqr) = qnr, so we have

ZAn(t) = exp
( ∞∑
r=1

qnr
tr

r

)
= exp

( ∞∑
r=1

(qnt)r

r

)
= exp

(
− log(1− qnt)

)
= exp

(
log(1− qnt)−1

)
=

1

1− qnt
Notice that the information given by the zeta function is equivalent to the fact that

#An(Fqr) = qnr.

Example 4.3. X = Pn. We have already shown that

#Pn(Fqr) = qnr + q(n−1)r + ...+ qr + 1 ,

therefore, by calculations similar to those made in example 1,

ZPn(t) =
1

(1− t)(1− qt)...(1− qnt)
.

Example 4.4. X ⊆ A3 is given by x1x2x3 − 1 = 0. We notice that none of the xi’s can
be zero, and the third is dependent on the other two, eg. x3 = 1/x1x2. Therefore

#X(Fqr) = (qr − 1)2

= q2r − 2qr + 1 ,

and the same sort of calculations as before lead to

ZX(t) =
(1− qt)2

(1− t)(1− q2t)
.

Example 4.5. The proof of this example will be given later. Consider the variety X :
y2 + y = x3, and take X ⊆ A2 to be defined over F2. We will eventually show that

#X(F2n) =

{
2n if n is odd

2n − 2(−2)n/2 if n is even .

So for any n,

#X(F2n) = 2n − (
√
−2)n − (−

√
2)n.

Notice that if n is odd then 3 - 2n − 1. So cubing is an automorphism of F∗2n , that is, the
map x→ x3 is a bijection on F2n . Also,

#{x ∈ A2n | TrF2n/F2(x) = 0} = 2n−1 .

So the case when n is odd is simple. The other case, however, is more difficult. For
instance, consider X(F4). Of course, 03 = 0, but for x 6= 0, x ∈ F4 we have x3 = 1. For
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each of these, there exist two values for y in F4 with y2 + y = x3. So #X(F4) = 8 =
22 − 2(−2)1.

If instead we consider X(F16), we notice that (x3)5 = 1 for all x 6= 0. So the cubes are
actually the fifth roots of unity. Now,

z5 − 1 = (z − 1)(z4 + z3 + z2 + z + 1) ,

therefore, if z5 = 1 and z 6= 1, then TrF16/F2(z) = 1 while TrF16/F2(1) = 0. So we only
get points on the curve when x3 = 1. Therefore it follows that X(F16) = X(F4) and
#X(F16) = 8 = 16− 2(−2)2. If we assume the formula for all n we get

ZX(t) =
1 + 2t2

(1− t)(1− 2t)
.

4.2. Weil Conjectures. We will first state the Weil Conjectures with a bit of explana-
tion, then present the motivation for them.

Theorem 4.6. Let X be an algebraic variety defined over Fq and let ZX(t) be its zeta
function. Then ZX(t) is a rational function with rational coefficients. That is, ZX(t) ∈
Q(t).

Note that this means

ZX(t) =
A(t)

B(t)

with A(t), B(t) ∈ Q[t]. Of course, we could multiply through by the least common multiple
of the denominators of the coefficients to get our functions A(t), B(t) ∈ Z[t]. Notice that
the zeta function, being an exponential, must have a constant term of 1. Therefore, we
can make A(0) = B(0) = 1. Factoring, we get

ZX(t) =
(1− α1t)(1− α2t)...(1− αst)
(1− β1t)(1− β2t)...(1− βut)

αi, βi ∈ C,

which is equivalent to saying that

#X(Fqr) =
s∑
i=1

αri −
u∑
j=1

βrj

for all r ≥ 1.
This part of the conjectures was proved for curves by F.K. Schmidt in the 1920’s and

was proved in general by Dwork around 1959.
We mention one consequence of this before we proceed. If we know the αi’s and the

βj’s, we can find X(Fqr) for all r. In order to know the α’s and β’s, it is enough to know
#X(Fqr) for r ≤ s+ u. So this is nice if we happen to know s and u in advance. We will
return to this case later.

Theorem 4.7. Suppose X is as in the hypotheses of conjecture 4.6 with the added con-
ditions that X is smooth and projective of dimension d, then

ZX(t) =
P1(t)P3(t)...P2d−1(t)

P0(t)P2(t)...P2d−2(t)P2d(t)
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where each Pi(t) ∈ Z[t], and Pi(0) = 1.
Further,

ZX

( 1

qnt

)
= ±(qn)χ/2tχZX(t)

where χ =
∑2d

i=0(−1)i degPi.

If X is the reduction modulo p of a smooth projective variety X̃ over Q, then degPi is

the ith Betti number of X̃(C). That is

degPi = dimRH
i(X(C),R).

Note that, for the last part, X̃(C) is a manifold of complex dimension d, thus of real
dimension 2d.

This part of the conjectures was proved for curves by Schmidt in the 1920’s and proved
in general by Grothendieck in the 1960’s.

Theorem 4.8. Under the same hypotheses and notation as in 4.7,

Pi(t) =

bi∏
j=1

(1− αijt)

where αij ∈ C and |αij| = qi/2.

This is called the Riemann hypothesis for varieties over finite fields and was proved for
curves by Weil in 1948. It was proved in general in 1974 by Deligne. We just mention
that one consequence of this is the Ramanujan-Petersson conjecture.

In order to help explain the motivation for the Zeta function and the Weil conjectures,
we will explore a bit of topology. Suppose that M is a compact, orientable, smooth, class
C∞, connected manifold of dimension d. From algebraic topology, M has cohomology
groups H i(M,C), for 0 ≤ i ≤ d, which are finite dimensional C vector spaces. Also,
dim(H i(M,C)) = bi, the ith Betti number of M so that b0 = bd = 1 and, due to Poincaré
duality,

H i(M,C)∗ ' Hd−i(M,C)

For example, if we have a 2-manifold of genus g, then H0 = H2 = C while dimH1 = 2g.
We also know that the Euler characteristic of M is χ(M) =

∑d
i=0(−1)ibi.

We need to state one theorem before we proceed.

4.3. Lefschetz’ Fixed Point Theorem. Suppose that we have a diffeomorphism f :
M → M which is orientation preserving, and assume that, for all P with f(P ) = P , dfP
has no eigenvalue equal to 1. Then

#{P ∈M |f(P ) = P} =
d∑
i=0

(−1)i Tr(f ∗ on H i),

where

f ∗ : H i(M,C)→ H i(M,C), i = 0, 1, ..., d

are linear maps induced by the diffeomorphism.
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So the theorem states, in particular, that although the traces are in C, the alternating
sum happens to be an integer, and the sum gives us the number of fixed points. If we
compose f with itself n times, we can also consider the fixed points of fn, and the theorem
gives us

#{P ∈M |fn(P ) = P} =
d∑
i=0

(−1)i Tr[(f ∗)non H i].

To this we will apply the following lemma.

Lemma 4.9. If ϕ : V → V is a linear map on the finite dimensional C vector space V ,
then

det(I − tϕ)−1 = exp(
∞∑
n=1

Tr(ϕn)
tn

n
).

So we can write

exp
∞∑
n=1

#{P ∈M |fn(P ) = P}t
n

n
=

d∏
i=0

(exp(
∞∑
n=1

[Tr(f ∗)n on H i]
tn

n
)(−1)i

=
d∏
i=0

det(I − t[f ∗ on H i])(−1)i+1

,

and this is now in Q(t).

4.4. Rational points as fixed points of the Frobenius map. Suppose that X is an
algebraic variety over Fq. We can think of X as lying inside of An or Pn.

Definition 4.10. The Fq Frobenius map F on An/Fq is given by

F ((a1, a2, ..., an)) = (aq1, a
q
2, ..., a

q
n).

On Pn/Fq the map is given by

F ((a0 : a1 : ... : an)) = (aq0 : aq1 : ... : aqn).

We wish to investigate the fixed points of this map. That is, we wish to understand
what it means for Fm(P ) = P . Over An, we can write

(aq
m

1 , aq
m

2 , ..., aq
m

n ) = (a1, a2, ..., an)⇔ aq
m

i = ai i = 1, 2, ..., n

⇔ ai ∈ Fqm i = 1, 2, ..., n

⇔ P ∈ An(Fqm).

The same can be done in projective space up to constant multiples of the point P . But
we are really concerned with what happens on the variety X. The following Lemma gives
us the answer.

Lemma 4.11. If X is an algebraic variety defined over Fq, then F maps X to X.
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Proof. Let X be defined over Fq, then X is the zero set of a system of polynomials
f1, f2, ..., fr ∈ Aq[x1, x2, ..., xn].

Recall that q is a power of the characteristic of the field Fq, and the coefficients of fj
are in Fq. If P is in X, then P = (a1, a2, ..., an) and fj(P ) = 0 for all j = 1, 2, ..., r. So,
fj(P )q = 0. But fj(P )q = fj(F (P )) so fj(F (P )) = 0, that is, F (P ) ∈ X.

We should also mention that if we write the Zeta function as

Z(t) =
P1P3...P2d−1

P0P2...P2d

,

where we have 2d polynomials because C is of dimension 2 over R, then Pi is the char-
acteristic polynomial of the Frobenius map in H i(X,K), with K being a field. Further,
H i(X,K) is dual to H2d−i(X,K). Note that

Pi(t) =

bi∏
j=1

(1− αijt)

where |αij| = qi/2, and {qd/αi,j} = {α2d−i,j} because the cohomology has this Poincaré
duality. For more information on this topic, we refer the reader to Katz’s Arizona Winter
School 2000 notes.1

One final consequence of the Weil conjectures is that

#X(Fqr) =
2d∑
i=0

(−1)i
bi∑
j=1

αij
r

which is equivalent to writing

Z(t) =
2d∏
i=0

bi∏
j=1

(1− αijt)(−1)i+1

.

Further, b0 = b2d = 1, so we can write

#X(Fqr) = qdr +
2d−1∑
i=0

(−1)i
bi∑
j=1

αrij ,

which gives us the following corollary.

Corollary 4.12 (Lang-Weil). Assuming the conditions and notation under which we have
been working,

|#X(Fqr)− qdr| ≤ Cq(d−1/2)r ,

where C =
∑2d−1

i=0 bi.

Now, for curves we have d = 1, so we are dealing with just 3 cohomology groups:
H0, H1, and H2. Both H0 and H2 are one dimensional. Therefore

Z(t) =
P1(t)

(1− t)(1− qt)
1Available on the world wide web at http://swc.math.arizona.edu/˜swcenter/aws2000/Notes.html.
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with degP1 = 2g, g being the genus of the curve. So we have

#X(Fqr) = qr + 1−
2g∑
j=1

αrj

with |αj| = q1/2 and

|#X(Fqr)− (qr + 1)| ≤ 2gqr/2 .

5. Week Five

5.1. Arithmetical Interlude. The Riemann Zeta-Function is defined, for all complex s
with Re(s) > 1, by

ζ(s) :=
∞∑
n=1

n−s .

Further, if we observe that, for all primes p,(
1− 1

ps

)−1

=
1

1− 1
ps

=
∞∑
m=0

1

pms
,

then by unique factorization, we have

ζ(s) =
∏
p

(
1− 1

ps

)−1

where the product is taken over all primes p.
These results were first proved by Euler, but it was Riemann who discovered the analytic

continuation of ζ(s) to C \ {1} with pole at 1 of order one and residue one.
Of great importance is

Conjecture 5.1 (Riemann Hypothesis). All zeroes of the Riemann Zeta-Function ζ(s)
in the critical strip 0 < Re(s) < 1 are on the line Re(s) = 1

2
.

Now consider the following diagram

OK ⊆ K∣∣∣ ∣∣∣
Z ⊆ Q

where
[
K : Q

]
<∞.

Here, OK denotes the ring of algebraic integers of K,

OK =
{
α ∈ K | αn + a1α

n−1 + · · ·+ an = 0, ai ∈ Z
}
.

Then OK is a Dedekind ring — that is, OK is Noetherian and integrally closed with
every prime ideal maximal. As an analogue to unique factorization over Z, every ideal I
in a Dedekind ring can be written uniquely as I = Pα1

1 · · ·P
αk
k where the Pi’s are prime
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and the αi’s are positive integers. We can then ask the question, ”Are there infinitely
many primes ideals in a Dedekind ring?”

This leads to the definition of the Dedekind zeta-function

ζOK (s) =
∑
I 6=0
I⊂OK

1

(NI)s

where NI = #OK/I, the number of elements in the quotient ring OK/I.
It turns out that many theorems which hold for the Riemann Zeta Function also hold

for ζOK (s), so the notion turns out to be fruitful over a general number field.

5.2. Analogy Between Number Fields and Function Fields. We can compare Z
with the polynomial ring k[x]. Both are Euclidean rings, and in k[x] the irreducible
polynomials play the role of prime numbers. We have, by analogy with number fields,

OK ⊆ K∣∣∣ ∣∣∣
k[x] ⊆ k(x)

where K = k(x, y) is the field of fractions of k[x, y]/(f(x, y)) ⊆ OK and f(x, y) = 0
determines the extension K.

We would like to imitate the definition of the Dedekind Zeta Function for function
fields instead of number fields. In order for this to work, we need OK/I to be finite for
all nonzero ideals I, and this in turn forces k to be finite. Then the same definition will
hold, but unfortunately, there is no canonical choice for OK .

Consider

ζFq [x](s) =
∑
I 6=0

1

(NI)s
=

∑
f(x)∈Fq [x]
f(x) monic

1

(N(f))s
.

The quotient ring k[x]/(f(x)) is in bijection with {a(x) ∈ k[x] | deg(a) < deg(f)} by
the map sending every polynomial in k[x] to its remainder upon division by f . Therefore
N(f) is the number of polynomials of degree less than deg f , that is N(f) = qdeg f . Using
the fact that for each fixed d there are exactly qd monic polynomials of degree d, we get∑

f(x)∈Fq [x]
f(x) monic

1

(N(f))s
=

∑
f(x)∈Fq [x]
f(x) monic

1

qs deg f
=
∞∑
d=0

qd

qsd
=

1

1− q1−s .

Observe that the final equality implies that ζFq [x](s) has no zeroes, unlike ζ(s). Also, if
we recall that

ZAn/Fq(t) =
1

1− qnt
then

ζFq [x](s) = ZA1/Fq(q
−s)
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Also,

ζFq [x](s) =
∏
p

(
1− 1

qs deg p

)−1

=
∞∏
d=1

(
1− 1

qsd

)−ad
where p is monic and irreducible and ad is the number of monic irreducible polynomials
of degree d. Then, replacing q−s by t, we obtain

1

1− qt
=
∞∏
d=1

(1− td)−ad

so that by taking logarithms,

− log(1− qt) = log

( ∞∏
d=1

(1− td)−ad
)

=
∞∑
d=1

−ad log(1− td) .

Then differentiating with respect to t, we arrive at

q

1− qt
=
∞∑
d=1

ad

( dtd−1

1− td
)
.

Note also that

q

1− qt
= q

∞∑
r=0

(qt)r

and ∑
d|m

dad = qm .

To see the latter equalities, note that we can factor xq
m − x =

∏
p irrreducible

deg p|m

p because a root

of p | xqm − x must be in Fqm , and conversely, if deg(p) | m, then the roots of p must
belong to Fqm

Using Möbius inversion, we get an analogue of the Prime Number Theorem:

am =
1

m

∑
d|m

µ
(m
d

)
qd ∼ qm

m

where µ is the Möbius function.
Now supposeX ⊆ An, X a smooth curve defined over Fq, i.e., ∃f1, · · · , fm ∈ Fq[x1, · · · , xn]

such that X is the set of common zeroes in Fq
n
.

Consider R = Fq[x1, · · · , xn]/(f1, · · · , fm) and let K be the field of fractions for R.
Suppose X ⊇ Y and Y is irreducible. The ideal P of Y in Fq[x1, · · · , xn] contains
(f1, · · · , fm). But Y irreducible implies that P is prime, so the image of P is prime in R.
We can also invert the process to get prime ideals in Fq[x1, · · · , xn] from prime ideals in
R.
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By definition, dim(X) = 1 if and only if every prime ideal of R is maximal. It turns
out that R is actually a Dedekind ring. Moreover, the quotients of R are finite, so we can
try to define a Zeta function by

ζR(s) =
∑
I 6=0

1

(NI)s
=

∏
P prime,P 6=0

(
1− 1

(NP )s

)−1

As before, X is a smooth affine curve over Fq, R = the coordinate ring of X =
Fq[x1, . . . , xn]/I where I = the ideal generated by the polynomials which determine X,

ζR(s) =
∑
I 6=0

1

(NI)s
=

∏
P prime, P 6=0

(
1− 1

(NP )s

)−1

ZX(t) = exp

( ∞∑
r=1

#X(Fqr)
tr

r

)
Theorem 5.2. ζR(s) = ZX(q−s)

Proof. Nonzero Prime ideals of R are in 1-1 correspondence with Fq−irreducible subvari-

eties of X defined over Fq. These subvarieties are Gal(Fq/Fq)-orbits of points in X(Fq).
This means that if P ∈ X(Fqr) but not in a smaller field, then P has r conjugates,

P = P (1), . . . , P (r),

where if P = (a1, . . . an), P (i) = (aq
i−1

1 , . . . , aq
i−1

n ), the orbits of points under the Frobenius
map F in X(Fq)

If P ∈ X(Fqr), then if g ∈ R, the map sending g to g(P ) is an onto homomorphism
from R to Fqr , and the kernel is a prime ideal P corresponding to P . R/P ∼= Fqr ,so
NP = qr. Define r = deg P, so NP = qdeg P. Then

ζR(s) =
∏
P

(
1− 1

qs deg P

)−1

and setting t = q−s,

ζR(s) =
∏
P

(
1− tdeg P

)−1

.

Now consider ζR(s) as a function F (t) of t. Then by logarithmic differentiation,

F ′(t)

F (t)
=
∑
P

deg P

1− tdeg P
tdeg P−1

=
∑
P

∞∑
m=0

(deg P)tdeg P−1tmdeg P

=
∑
P

∞∑
m=0

(deg P)t(m+1) deg P−1 .
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Now set k = (m+ 1) deg P. Then the sum becomes

∞∑
k=1

( ∑
deg P|k

deg P

)
tk−1 =

∞∑
k=1

Nkt
k−1

where Nk is the number of points in X(Fq) whose orbit under the Frobenius map has
cardinality dividing k. But the degree of the field generated by the coordinates of P
divides k, so P ∈ X(Fqk), Nk = #X(Fqk), and

logF (t) =

∫ t

1

F ′(x)

F (x)
dx =

∞∑
k=1

Nk
tk

k
,

so

ζR(s) = F (t) = exp

( ∞∑
k=1

Nk
tk

k

)
= exp

( ∞∑
k=1

#X(Fqk)
tk

k

)
= ZX(t) = ZX(q−s)

Consider a homomorphism χ : F∗q → C
∗ whose image is the nthroots of unity where

n | q − 1, and a homomorphism ψ : Fq → C whose image is the pth roots of unity. Define
χm : F∗qm → C

∗ and ψm : Fqm → C by

χm(x) = χ(NFqm/Fq(x))

and

ψm(x) = ψ(TrFqm/Fq(x)) .

Define the generalized Gauss sum g(χm, ψm) as

g(χm, ψm) =
∑
x∈Fqm

χm(x)ψm(x)

with the convention that χm(0) = 0.

Theorem 5.3 (Hasse-Davenport formula). −g(χm, ψm) = (−g(χ, ψ))m

Before proving the theorem, we use the Hasse-Davenport formula to complete our
computation of the zeta function of y2 − y = x3 over F2. We have already shown that
#X(F2n) = 2n when n is odd. Now we will establish that #X(F2n) = 2n − 2(−2)

n
2 when

n is even. Since n even ⇒ 2n = 4
n
2 , we will work over F4m

Let u ∈ F4m , u 6= 0. Then χm(u) = 1 if and only if u is a cube. Otherwise, χm(u) =
the image of w or w2 where w is a generator for F∗4. Then

1 + χm(u) + χm(u) = 1 + χm(u) + χm(u)

=


3 if u is a cube, u 6= 0

0 if u is not a cube

1 if u = 0

= #{x ∈ F4m | x3 = u} .
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Now

ψm(u) = (−1)
Tr
Fqm/Fq

(u)

=

{
1, if u = y2 + y

−1, otherwise

and

1 + ψm(u) = #{y ∈ Fqm | y2 + y = u} .
Then

#X(F4m) =
∑
u∈F4m

(1 + χm(u) + χm(u))(1 + ψm(u))

=
∑
u∈F4m

1 + χm(u) + χm(u) + ψm(u) + χm(u)ψm(u) + χm(u)ψm(u) .

Now note that ∑
u∈F4m

ψm(u) =
∑
u∈F4m

χm(u) =
∑
u∈F∗4m

χm(u) = 0 ,

so that we have

#X(F4m) =
∑
u∈F4m

1 + χm(u)ψm(u) + χm(u)ψm(u)

= 4m + g(χm, ψm) + g(χm, ψm)

= 4m − (−g(χm, ψm))− (−g(χm, ψm))

= 4m − (−g(χ, ψ))m − (−g(χ, ψ))m

by Hasse-Davenport.
Finally, if we observe that

g(χ, ψ) = χ(1)ψ(1) + χ(w)ψ(w) + χ(w2)ψ(w2)

= 1 + e
2πi
3 (−1) + e

4πi
3 (−1) = 2 ,

we obtain

#X(F4m) = 4m − 2(−2)m = 22m − 2(−2)m

as conjectured.
Now for the proof of the Hasse-Davenport formula. First, a definition.

Definition 5.4. If f(x) ∈ Fq[x] is of the form f(x) = xm − c1x
m−1 + . . .+ (−1)mcm,

λ(f) := χ(cn)ψ(c1)

where χ, ψ are as before.

Lemma 5.5. λ(fg) = λ(f)λ(g)
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The proof is trivial.

Lemma 5.6. Suppose u ∈ Fqmwith minimal polynomial f(x) over Fq of degree d | m.
Then

λ(f)
m
d = χm(u)ψm(u)

Proof. Set f(x) = xd − a1x
d−1 + . . .+ (−1)dad, a1 = TrF

qd
/Fq(u), ad = NF

qd
/Fq(u). Then

m

d
a1 = TrFqm/Fq(u), a

m
d
d = NFqm/Fq(u)

and

χm(u)ψm(u) = χ(a
m
d
d )ψ(

m

d
a1)

= χ(ad)
m
d ψ(a1)

m
d

= (χ(ad)ψ(a1))
m
d

= λ(f)
m
d

Define L(t, λ) :=
∑

f(x)∈Fq [x]
f monic

λ(f)tdeg(f) =
∑

f(x)∈Fq [x]
f monic

λ(f) 1
(N(f))s

where q−s = t, so

L(t, λ) =
∞∑
d=0

( ∑
f(x)∈Fq [x]
deg(f)=d
f monic

λ(f)

)
td = 1 + g(χ, ψ)t+ {higher-order terms}

since λ(t− c) = χ(c)ψ(c)
Next time, we will prove the following:

Lemma 5.7. The coefficients of L(t, λ) of degree ≥ 2 vanish.

6. Week Six

Recall that we have the following non-trivial homomorphisms: χ : F∗q → C
∗ a multi-

plicative character, and ψ : Fq → C
∗ an additive homomorphism. Also note that every

element in the image of one of these homomorphisms is a root of unity. Now define

χm = χ ◦NFqm/Fq ψm = ψ ◦ TrFqm/Fq .

We extend χm to a map on all of Fq by defining χm(0) = 0. Now we define the Gauss
sum to be

g(χm, ψm) =
∑
x∈Fqm

χm(x)ψm(x) .

Note that χ1 = χ and ψ1 = ψ. Eventually, we will prove

Theorem 6.1 (Hasse-Davenport Formula). −g(χm, ψm) = (−g(χ, ψ))m.
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First, let f(x) = xd−c1x
d−1 +c2x

d−2 + · · ·+(−1)dcd ∈ Fq[x] and set λ(f) = χ(cd)ψ(c1).
We define the function

L(t, λ) =
∑

f∈Fq [x] monic

λ(f)tdeg(f) .

The claim is that L(t, λ) = 1+g(χ, ψ)t. It is clear that the first term is 1. When deg(f) = 1
and f is monic, f(x) is of the form x− c1. Thus c1 = cd, and so λ(f) = χ(c1)ψ(c1). Now
as the sum runs over all monic polynomials of degree 1, each element in Fq appears only
once, so the first two terms of L(t, λ) are

1 +
∑
c∈Fq

χ(c)ψ(c)t = 1 + g(χ, ψ)t .

To prove the claim, we need only prove that, for d ≥ 2,∑
f∈Fq [x] monic

deg f=d

λ(f) = 0

Since λ(f) depends only on two of the coefficients of f , we get∑
f∈Fq monic

deg f=d

λ(f) =
∑

c1,c2,... ,cd∈Fq

χ(cd)ψ(c1) = qd−2
∑

c1,cd∈Fq

χ(cd)ψ(c1) .

Since c1, cd both range over all of Fq, this final sum is equal to

qd−2
( ∑
c1∈Fq

ψ(c1)
)( ∑

cd∈Fq

χ(cd)
)
.

Both of these sums is zero, so we are done. For instance,
∑
χ(cd) is just the sum over all

the nth roots of unity — n | q − 1 — multiplied by some constant, which is zero. This
proves the claim that L(t, λ) = 1 + g(χ, ψ)t.

Now it is easy to show that λ(fg) = λ(f)λ(g), so factoring the monic polynomials
f(x) ∈ Fq[x] into irreducible factors and noting that every polynomial is uniquely deter-
mined by its irreducible factors, we get

L(t, λ) =
∏

p(x)∈Fq [x]
monic, irreducible

(1− λ(p)tdeg(p))−1

using a geometric series expansion. Taking the logarithmic derivative of L(t, λ) with
respect to t yields

L′

L
=

∑
p(x)∈Fq [x]

monic
irreducible

λ(p) deg(p)tdeg(p)−1

1− λ(p)tdeg(p)
=

∞∑
m=1

( ∑
p(x)∈Fq [x]
deg(p)|m

deg(p)λ(p)m/ deg(p)
)
tm−1

repeating a previous calculation by expanding in a geometric series and then grouping
polynomials by degree. We previously established that if α ∈ Fqm has minimal polynomial
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p(x) with deg(p) = d dividing m, then λ(p)m/d = ψm(α)χm(α). Let α1, . . . , αd be the
Galois conjugates of α; then

deg(p)λ(p)m/d =
d∑
i=1

ψm(αi)χm(αi)

because λ(p)m/d is the same regardless of which root is used to calculate ψm(αi)χm(αi).
Now we have a bijection between Galois orbits of size d and irreducible polynomials of
degree d | m. Going back to our sum, if d = deg(p), then∑

d|m

dλ(p)m/d =
∑
α∈Fqm

ψm(α)χm(α) = g(χm, ψm) .

But L′/L = g(χ,ψ)
1+g(χ,ψ)t

=
∑∞

m=1(−1)m−1g(χ, ψ)mtm−1 when we expand in a geometric series.

Comparing terms shows that

(−1)m−1g(χ, ψ)m = g(χm, ψm)

which proves the Hasse-Davenport formula after multiplication by −1.

Exercise 6.1. Express the zeta function of yp − y = xm over Fq where q = pn ≡ 1
(mod m) as a product of L-functions L(t, λ).

We will now prove the Riemann Hypothesis for this function. It is equivalent to the
following formula.

Theorem 6.2. |g(χ, ψ)| = √q.

Proof. First recall that g(χ, ψ) =
∑

x∈F∗q
χ(x)ψ(x). Thus if we take the absolute value of

g(χ, ψ) and square it, we get

|g(χ, ψ)|2 =
(∑
x∈F∗q

χ(x)ψ(x)
)(∑

y∈F∗q

χ(y)ψ(y)
)

=
∑
x,y∈F∗q

χ(x)ψ(x)χ(y)ψ(y) .

Since every element in the image of either χ or ψ is a root of unity and roots of unity have
absolute value 1, we can conclude that χ(y) = χ(y−1) and ψ(y) = ψ(−y). Now replace x
by ty, and our sum becomes∑

t,y∈F∗q

χ(ty)ψ(ty)χ(y−1)ψ(−y) =
∑
t,y∈F∗q

χ(t)ψ((t− 1)y)

which we can then separate out into the sum∑
t∈F∗q

χ(t)
∑
y∈F∗q

ψ((t− 1)y) .

First consider the sum
∑

y∈Fq ψ((t− 1)y). When t = 1, we have∑
y∈Fq

ψ(0) = qψ(0) = q
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since ψ(0) = 1. When t 6= 0, this sum ranges over all the elements in Fq and thus is equal
to zero. Therefore∑

t∈F∗q

χ(t)
(∑
y∈F∗q

ψ((t− 1)y)
)

=
∑
t∈F∗q

χ(t)
(
− 1 +

∑
y∈Fq

ψ((t− 1)y)
)

= q − 1 +
∑
t6=0,1

χ(t)
(
− 1 +

∑
y∈Fq

ψ((t− 1)y)
)

= q − 1−
∑
t6=0,1

χ(t)

= q − 1−
∑
t∈Fq

χ(t) + χ(1) = q ,

which completes the proof.

Our discussion so far has been concerned with a smooth affine curve X with coordinate
ring R. We defined

ZX/Fq(t) = exp
( ∞∑
r=1

#X(Fqr)
tr

r

)
and

ζR(s) =
∑
I 6=(0)

ideal in R

1

(NI)s
=

∏
P 6=(0)

prime ideal in R

(
1− 1

(NP )s

)−1

and proved that ζR(s) = ZX/Fq(q
−s). Now let X = X ∩ An where X ⊂ Pn is a smooth

projective curve. Let T = X \ X = X ∩ H where H is the hyperplane at infinity,
H = Pn \An. Then T is a finite set of points, and we define T = T1 ∪ · · · ∪ Tk where each
Ti is Fq-irreducible and hence a Gal(Fq/Fq)-orbit of points. Define di to be the number
of points in the set Ti. Thus the zeta function for each of these sets is

ZTi/Fq(t) = exp
( ∞∑
r=1

#Ti(Fqr)
tr

r

)
.

Now if di divides r, then the points in Ti have coordinates in Fqr and so di = #Ti(Fqr).
Otherwise, this value is zero. Hence,

ZTi/Fq(t) =
1

1− tdi
.

This then proves the following formula:

ZX/Fq(t) =
( k∏
i=1

1

1− tdi
)
ZX/Fq(t) .

We have seen before how∏
P 6=0

prime ideal in R

(
1− 1

(NP )s

)−1

=
∏

(1− tdeg(P ))−1

30



where t = q−s; note the similarities between this formula and the one above for ZTi/Fq(t).

Define a prime divisor of X to be a Gal(Fq/Fq)-orbit of points of X. Thus a prime
divisor corresponds to either a prime ideal of R or to one of the sets Ti above. If P is a
prime divisor, we define deg(P ) to be the number of points in the orbit of P . Hence we
have that the equation (6) above gives

ZX/Fq(t) =
∏

P prime divisor of X

(1− tdeg(P ))−1 .

A divisor of X/Fq is an element of the free abelian group generated by the prime divisors.
Thus for any divisor D, we write

D =
∑
P

nPP

where nP ∈ Z and only a finite number of the nP are nonzero. We say that a divisor is
positive if nP ≥ 0 for all prime divisors P . The degree of a general divisor is then defined
to be

deg(D) =
∑
P

nP deg(P ) .

We adopt the following notation from this point. X will denote a smooth projective
curve with X0 = X ∩An an affine piece of X, where X is contained in Pn. R will denote
the coordinate ring of X with F its field of fractions. Note that F is the function field of
X and is an invariant of the curve that can be computed using any Zariski-open subset.
X will always be defined over Fq, and X(Fq) will denote all of the points of X with

coordinates in the algebraic closure Fq of Fq. Now Gal(Fq/Fq) acts on X(Fq) and the
orbits of this action are the prime divisors Pi with degree defined to be the number of
points in this orbit. This is also the degree of the extension obtained by adjoining to
Fq the elements which are the coordinates of the points in the orbit; note of course that

Gal(Fq/Fq) fixes X(Fq). If Pi is a prime divisor corresponding to a prime ideal, we write
Pi for that ideal.

If I is an ideal of R, then it can uniquely be written as a product of prime ideals since
R is a Dedekind ring: I = Pn1

1 · · ·P
nk
k . Thus the divisor corresponding to this ideal is

DI =
∑
P

niPi.

Therefore prime ideals of R correspond to irreducible subvarieties of X0 of zero dimension
(that is, a finite set of points) which clearly correspond to an orbit under the Galois action
by irreducibility. We define the cardinality of the set R/I to be the norm of I, denoted
NI; it is also equal to qdeg(DI). Then we have

ZX(t) =
∑

D≥0 divisor

tdeg(D) =
∏

P prime divisor

(1− tdeg(P ))−1 .

Using the change of variables t = q−s and the fact that there are only a finite number of
prime divisors of each degree and hence only a finite number of divisors of each degree,
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our calculations yield∑
I6=0

ideal in R

1

(NI)s
=
∑
D≥0

tdeg(D) =
∞∑
d=0

(#{D ≥ 0 : deg(D) = d})td .

Let f ∈ R and consider the principal ideal (f) ⊂ R. Thus we can write (f) =
Pn1

1 · · ·P
nk
k . Set ni equal to vPi(f), and define vP (f) = n if f ∈ Pn \ Pn+1. Now if

h = f/g is an element of F ∗, then vP (h) = vP (f) − vP (g). By taking a different affine
subset X0 ⊂ X, we can define vP for all prime divisors P . As an example, let X = P1 and
X0 = A

1. Then R = Fq[x] and the roots of monic irreducible polynomials are the Galois
orbits as prime ideals correspond to monic irreducible polynomials. The prime divisor
at infinity corresponds to the single point at infinity, which in turn corresponds to the
ideal ( 1

x
) ⊂ Fq[ 1

x
]; thus v∞(f) = − deg(f) for f ∈ Fq[x]. We will not prove the following

theorem, though it will be useful.

Theorem 6.3 (Product Formula). For all f ∈ F ∗,
∑

P vP (f) deg(P ) = 0.

From the example above using X = P
1, let f(x) = a(x)/b(x) ∈ F ∗ with a, b relatively

prime. Write a(x) =
∏
pnii and b(x) =

∏
q
mj
j where the polynomials pi, qj are irreducible.

We know that vP (f) = vP (a)− vP (b). When P corresponds to pi, this makes vP (f) = ni;
if P corresponds to qj, then vP (f) = −mj. Thus∑

P

vP (f) deg(P ) =
∑

ni deg(Pi)−
∑

mj deg(Qj) + deg(b)− deg(a) = 0

since deg(a) =
∑
ni deg(pi) and deg(b) =

∑
mj deg(qj).

To justify the name product formula, set |f |P = q−vP (f), then the theorem above is
equivalent to ∏

P

|f |deg(P )
P = 1 .

Now let f ∈ F ∗. Then the divisor of f , written (f), is defined to be the divisor∑
P vP (f)P . The product formula then shows that deg(f) = 0 for all f ∈ F ∗. If D1, D2

are divisors on X, then we say that D1 is linearly equivalent to D2 if there exists some
f ∈ F ∗ such that D1 −D2 = (f); if this is the case, we write D1 ∼ D2. Since deg(f) = 0
for all functions f , it is a necessary condition, for D1 ∼ D2, that D1 and D2 have the
same degree.

Exercise 6.2. If X = P1, show that D1 ∼ D2 if and only if deg(D1) = deg(D2).

Let D be a divisor on X. Then we define the vector space L(D) by

L(D) = {f ∈ F ∗ : D + (f) ≥ 0, or equivalently, (f) ≥ −D} ∪ {0} .
Now L(D) is an Fq-vector space and is finite dimension; we let l(D) denote its dimension.

For example, once again let X = P
1 and let D = n · ∞. Then f ∈ L(D) if and

only if v∞ ≥ −n and vP (f) ≥ 0 for all divisors P that are not the prime divisor at
infinity. The first condition requires that the degree of f be at most n, and the second
condition is equivalent to saying that f has no poles except at infinity, thus is a polynomial.
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Therefore L(D) is the vector space of polynomials of degree at most n and has dimension
l(D) = n+ 1.

We will not prove this next theorem, though it will be used repeatedly and is of great
importance.

Theorem 6.4 (Riemann-Roch Theorem). Let X be a smooth projective curve. Then
there exists a divisor K and an integer g (the genus of X) such that for all divisors
D of X,

l(D) = deg(D) + 1− g + l(K −D) .

If deg(D) < 0, then f ∈ L(D) implies that deg(f) ≥ − deg(D) > 0, which is impossible
by the product formula. Thus L(D) = {0} and l(D) = 0. This proves that if deg(D) >
deg(K), then l(K −D) = 0. Hence for sufficiently large n, the example above and these
remarks show that the genus of P1 is zero. We now claim that l(0) = 1 and L(0) = Fq.
If f ∈ L(0), then (f) ≥ 0 and so vP (f) ≥ 0 for all prime divisors P . This implies that f
has no poles, and is therefore a constant. Therefore f ∈ Fq, proving the claim.

Now when D = 0,

1 = l(0) = deg(0) + 1− g + l(K)

proving that l(K) = g. If D = K, then

g = l(K) = deg(K) + 1− g + l(0) = deg(K) + 2− g .

This shows that deg(K) = 2g − 2. Note that K is not a uniquely determined divisor,
though — it is determined only up to linear equivalence.

7. Week Seven

Example 7.1. Suppose charFq 6= 2. Consider the elliptic curve X : y2 = f(x) where
f(x) is a cubic polynomial with no repeated roots. Let O denote the unique point at
infinity. A function z on X can be written as z = a + by, where a and b are rational
functions in x. If z has no affine poles then clearly neither does z̄ = a − by, since
the automorphism (x, y) 7→ (x,−y) will interchange poles of z and z̄. It follows that
a = (z + z̄)/2 has no poles, hence is a polynomial. With a bit more effort we can also
show that b is a polynomial in this case. One can also show that x has a double pole at
O while y has a triple pole at O. Thus the elements of L(nO) are of the form a+ by, with
deg a ≤ n/2, deg b ≤ (n − 3)/2. Hence l(nO) = n so, by Riemann-Roch, the genus of X
is 1.

Example 7.2. For a smooth plane curve of degree d, the genus is (d−1)(d−2)
2

. Hence if
d = 3, the genus is 1. This can be shown as follows. If H is the divisor cut on the curve by
the line at infinity then x, y ∈ L(H), so xiyj ∈ L(nH) if i+ j ≤ n. Using the smoothness
of the curve, it can be shown that these monomials generate L(nH) and the relations are
generated by those of the form xiyjf(x, y) = 0, i + j ≤ n − d, where f(x, y) = 0 is the
equation of the curve. Hence l(nH) =

(
n+2

2

)
−
(
n−d+2

2

)
= nd − d(d − 3)/2. As before,

Riemann-Roch gives us the genus.
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Let DivX denote the group of divisors of X, that is the free abelian group generated
by the prime divisors of X. Recall that we defined a degree map deg : DivX → Z which
is clearly a homomorphism. Let Div0 X be the kernel of this map, i.e., the subgroup of
divisors of degree zero. Let δ > 0 be such that deg(DivX) = δZ (for curves over finite
fields, we will show below that δ = 1). We defined above, for every f ∈ F ∗ a divisor (f)
such that deg(f) = 0 (by the product formula). We have an exact sequence

F ∗ −→ Div0 F −→ Pic0 X −→ 0

where Pic0 X is the class group of X (or F ). Let H∞ be the subgroup of Pic0 X generated
by the divisors at infinity. If there is a divisor of degree one supported at infinity then
the class group Cl(R) ' Pic0 X/H∞.

Theorem 7.3. If X is a curve defined over a finite field then Pic0 X is finite and, de-
noting h = # Pic0 X, the number of divisor classes of degree d for any d in δZ is also
h.

Proof. There exist only finitely many prime divisors of any degree since they correspond
to orbits points defined over a fixed finite field. Hence there are only finitely many positive
divisors of a given degree. We have that degK = 2g − 2 = δm for some m ∈ Z. Let
D1, . . . , Dh be a maximal set of inequivalent positive divisors of degree δ(m + 1), which
we know is finite. We proceed to show that for any d in δZ there are exacly h classes of
divisors of degree d. Let D0 be a divisor of degree δ. Suppose D is a divisor of degree
d = rδ. Consider the divisor D′ = D + (m + 1 − r)D0 which has degree (m + 1)δ. So,
deg(K − D′) < 0 and therefore l(K − D′) = 0. The Riemann-Roch theorem then gives
l(D′) = degD′ + 1 − g > 0. So there exists f ∈ L(D′) \ {0}, i.e., (f) + D′ ≥ 0. But
(f) + D′ has degree (m + 1)δ. So (f) + D′ ∼ Di for some i ∈ {1, . . . , h}. Therefore,
D ∼ Di−(m+1−r)D0 for some i. For fixed r, the Di−(m+1−r)D0 are all inequivalent,
since the Di are inequivalent, and this shows that there are exacly h classes of divisors of
degree d.

Example 7.4. For elliptic curves, δ = 1. Every divisor of degree r is equivalent to
Di − (1− r)O for some i. Here the Di are positive divisors of degree one, so are rational
points. One can show that the correspondence X(Fq) → Pic0(X) : P 7→ P − O is an
isomorphism of groups, where X(Fq) has the group structure given by the familiar chord
and tangent process.

Remark 7.5. The notions of prime divisor, Pic0, etc.,depend on the choice of the finite
field. For all n ≥ 1, we can consider Pic0(X/Fqn). One can show that there exists an
algebraic variety JX over Fq of dimension g called the Jacobian of X, which is an algebraic
group and satisfies JX(Fqn) = Pic0(X/Fqn) for all n ≥ 1.

Returning to zeta functions, recall

ZX(t) =
∑
D≥0

tdegD =
∞∑
d=0

#{D ≥ 0 : degD = d}td .

34



Note that if d = rδ,

#{D ≥ 0 : degD = d} =
h∑
i=1

#{D ≥ 0 : D ∼ Di − (m+ 1− r)D0} .

Lemma 7.6. If r ≥ m+ 1, then

#{D ≥ 0 : D ∼ Di − (m+ 1− r)D0} =
qrδ+1−g − 1

q − 1
.

Proof. An element of the set {D ≥ 0 : D ∼ Di − (m+ 1− r)D0} is of the form

D = (f) +Di − (m+ 1− r)D0

for some f ∈ L(Di − (m + 1 − r)D0), with f 6= 0. Two functions f1, f2 give the same
divisor if and only if f1 = λf2 for some λ ∈ F∗q. By Riemann-Roch,

dimFq L(Di − (m+ 1− r)D0) = rδ + 1− g

if rδ > 2g − 2. Then

#L(Di − (m+ 1− r)D0) = qrδ+1−g .

Now noting #F∗q = q − 1 gives the lemma.

Let X be a smooth projective curve of genus g over Fq. For some δ > 0, deg(DivX) =
δZ, with 2g − 2 = mδ. The class number

h = #{D ∈ DivX : degD = 0}/{(f) : f ∈ F ∗}

where F is the function field of X. We showed ∀d ∈ δZ, the number of divisor classes of
degree d is also h. If D has degree d = rδ > 2g − 2, then

#{D′ ≥ 0 : D′ ∼ D} =
qrδ+1−g − 1

q − 1
.

Hence for the zeta function ZX(t) =
∑∞

d=0 adt
d,

ad = h
qrδ+1−g − 1

q − 1

if d = rδ > 2g − 2. We write

ZX(t) =

2g−2∑
d=0

adt
d +

∞∑
r=m+1

h
qrδ+1−g − 1

q − 1
trδ

=

2g−2∑
d=0

adt
d +

h

q − 1
(q1−g (qt)(m+1)δ

1− (qt)δ
− t(m+1)δ

1− tδ
)

This proves the following

Theorem 7.7. For a curve X over a finite field the zeta function ZX(t) ∈ Q(t).
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We also notice that the above formula shows that ZX(t) has simple poles at α when
αδ = 1. In particular, ZX(t) has a simple pole at α = 1.

We would like to prove that δ = 1. If we could prove that there exists a prime divisor
Pn of degree n, for any n ≥ n0, then we could show δ = 1 by considering Pn − Pn−1. We
will not proceed this way; our proof will be analytic.

Lemma 7.8.

ZX/F
qk

(tk) =
∏
ζk=1

ZX/Fq(ζt) .

Proof. Note

ZX/Fq(t) = exp
( ∞∑
n=1

#X(Fqn)
tn

n

)
.

The right side in the statement of the lemma is∏
ζk=1

ZX/Fq(ζt) = exp
( ∞∑
n=1

#X(Fq
n

)
(∑
ζk=1

ζn
)tn
n

)
= exp

∞∑
r=1

#X(Fqkr)k
tkr

kr

which equals the left side.

This proof works for any algebraic variety over Fq.

Theorem 7.9. δ = 1 .

Proof. Apply the lemma with k = δ.

ZX/F
qδ

(tδ) =
∏
αδ=1

ZX/Fq(αt) .

We check on both sides for poles at t = 1. Since ZX/Fq(t) has a pole at α, αδ = 1, ZX/Fq(αt)
has a pole at t = 1. So the right side has a pole of order δ at t = 1. We know from above
that ZX/F

qδ
(t) has a simple pole at t = 1 and this implies that ZX/F

qδ
(tδ) has a simple

pole at t = 1. Therefore, δ = 1.

Corollary 7.10. An elliptic curve over a finite field is non-empty.

Proof. Since δ = 1, there exists a divisor of degree 1, say D. Then L(D) has dimension

degD + 1− g + l(K −D) = 1

there exists f 6= 0, (f) +D ≥ 0. Now, (f) +D is a poistive divisor of degree one, that is,
a rational point.

Remark 7.11. This is not true for higher genus.

Exercise 7.1. (This is an open problem) Determine all pairs (g, q) for which there exists
X/Fq of genus g with X(Fq) = ∅.
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For any curve,

ZX(t) =
P (t)

(1− t)(1− qt)
with P (t) ∈ Z[t] and deg(P ) ≤ 2g. In fact,

P (t) = (1− t)(1− qt)(
2g−2∑
d=0

adt
d) +

h

q − 1
(q1−g(1− t)(qt)2g−1 − (1− qt)t2g−1).

From the definition of the zeta function we see that P (0) = ZX(0) = 1 and by the
above formula, P (1) = h. This is known as the class number formula.

The leading coefficient of P (t) is

qa2g−2 +
h

q − 1
(q − qg)

and

a2g−2 = #{D ≥ 0 : deg(D) = 2g − 2} =
h∑
i=1

#{D ≥ 0 : D ∼ Ei}

where E1, . . . , Eh are representatives of the distinct divisor classes of degree 2g− 2. This
number is also

h∑
i=1

ql(Ei) − 1

q − 1

By Riemann-Roch,

l(Ei) = 2g − 2 + 1− g + l(K − Ei) = g − 1 + l(K − Ei)

Lemma 7.12. If Ei ∼ K then l(K − Ei) = 1. Otherwise, l(K − Ei) = 0.

Proof. If K ∼ Ei, then l(K−Ei) = l(0) = 1. In any case, l(K−Ei) ≥ 0. If l(K−Ei) > 0,
then for some f 6= 0, (f) + K − Ei ≥ 0 and has degree zero, so that (f) + K − Ei = 0.
i.e., K ∼ Ei.

It follows from this lemma that a2g−2 = (h− 1)(qg−1− 1)/(q− 1) + (qg− 1)/(q− 1) and
therefore the leading coefficient of P (t) is qg.

8. Week Eight

Let X/Fq be a smooth projective curve of genus g. We have proved last time that:

ZX/Fq(t) =
P (t)

(1− t)(1− qt)
,

where P (t) =
∑2g

i=0 bit
i with b0 = 1 and b2g = qg.

Lemma 8.1. There exists an integer k and C > 0 such that for every n ≥ 1,

|#X(Fqnk)− qnk| ≤ Cqnk/2 .
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We will prove this lemma later, but will use it now.
We can write P (t) =

∏2g
i=1(1− αit), then:

#X(Fqn) = qn + 1−
2g∑
i=1

αni .

Using the lemma, we see that for every n ≥ 1,∣∣∣1− 2g∑
i=1

αkni

∣∣∣ ≤ Cqnk/2 ,

for the appropriate k and C. Then:∣∣∣ 2g∑
i=1

αkni

∣∣∣ ≤ (C + 1)qnk/2 .

Claim 8.2. |αi| ≤ q1/2, for every 1 ≤ i ≤ 2g.

Proof. Consider:

2g∑
i=1

1

1− αki t
=

2g∑
i=1

∞∑
n=0

αkni t
n =

∞∑
n=0

( 2g∑
i=1

αkni

)
tn.

The series on the right hand side converges if |t| < q−k/2. Using the left hand side, this
implies that |α−ki | ≥ q−k/2, therefore |αi| ≤ q1/2. This finishes the proof of the claim.

Hence, for all n ≥ 1, we have:

|#X(Fqn)− qn − 1| ≤ 2gqn/2,

i.e. we improved the lemma.

Example 8.3. (Elliptic Curves) Let g = 1, then:

P (t) = 1− at+ qt2 = (1− αt)(1− βt) ,
for some a, where α + β = a, αβ = q, and:

#X(Fqn) = qn + 1− αn − βn ,
hence:

#X(Fq) = q + 1− α− β = q + 1− a ,
so we would need to find a in order to determine #X(Fq).

In general, P (t) =
∏2g

i=1(1 − αit), so
∏2g

i=1 αi = qg, i.e.
∏2g

i=1|αi| = qg. Now we also
know that |αi| ≤ q1/2. Hence, in case X/Fq is a smooth projective curve of genus g, we
must have:

Theorem 8.4. (Riemann Hypothesis) |αi| = q1/2 for all 1 ≤ i ≤ 2g.

Claim 8.5. {q/α1, . . . , q/α2g} = {α1, . . . , α2g}.
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Proof. We know that for each 1 ≤ i ≤ 2g, αiαi = |αi|2 = q. On the other hand,
P (t) ∈ R[t], so αi is also a root of P (t), since αi is, for each 1 ≤ i ≤ 2g. But αi = q/αi.
The conclusion follows.

It follows from the above claim that:

Corollary 8.6 (Functional Equation). ZX( 1
qt

) = q1−gt2−2gZX(t).

The above argument is not the usual proof of the functional equation. The usual proof
of the functional equation proceeds by relating the coefficient ad to the coefficient a2g−2−d,
using the Riemann-Roch theorem, in the formula

ZX(t) =

2g−2∑
d=0

adt
d +

h

q − 1

(
q1−g (qt)2g−1

1− qt
− t2g−1

1− t

)
,

proved previously.
We will now briefly step aside, and talk about Riemann-Roch theorem in the case of

a number field. Recall that if F is a function field, and f ∈ F×, then degree of the
corresponding divisor (f) is given by the so called product formula:

deg(f) =
∑
℘

v℘(f) deg(℘) = 0 ,

where the sum is taken over all prime divisors ℘, and v℘(f) = n if f ∈ P n\P n+1 for the
prime ideal P corresponding to ℘. The analog of this product formula for the field of
rational numbers Q will be: ∑

p

vp(a) log p = log|a| ,

where the sum is taken over all prime numbers p in Z, for all a = ±
∏

p p
αp ∈ Q, αp = vp(a).

Now suppose K is a number field, i.e. K/Q is a finite field extension, and let α ∈ K∗. If
N is the norm, then the product formula reads:∑

℘

c℘v℘(α) logN℘ =
∑

σ:K↪→C

log |σ(α)|] ,

and then we can consider divisors which are formal sums

D =
∑
℘

n℘℘+
∑
σ

nσσ ,

with the n℘ integers and the nσ real numbers, and:

L(D) = {α ∈ K∗ : (α) +D ≥ 0} ∪ {0} .

Getting back to our business with X/Fq being a smooth projective curve, we recall that
we have:

#X(Fqn) = qn + 1−
2g∑
i=1

αni ⇒ |#X(Fqn)− (qn + 1)| ≤ 2gqn/2 .
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Goppa discovered that one could make good codes out of curves with many points. One
of the fundamental questions to be asked in these regards is how large can the number of
points get if q is fixed and g varies?

Example 8.7. Let q = 2, n = 1, then by our result above:

|#X(F2)− 3| ≤ 2g
√

2 .

We will now consider some consequences of the above inequality. First we introduce
some notation.

Definition 8.8. Define: Nq(g) = max{#X(Fq) : X/Fq of genus g}, Aq = lim supg→∞
Nq(g)

g
.

Notice that:

#X(Fq) ≤ q + 1 + 2gq1/2 ⇒ Aq ≤ 2
√
q .

Serre noticed that the Weil estimate can be improved thus:

Theorem 8.9. #X(Fq) ≤ q + 1 + g
[
2q1/2

]
.

Proof. Notice that βi = 1 +
[
2q1/2

]
+ αi + ᾱi ∈ R are algebraic integers for all 1 ≤ i ≤ g,

and
∑g

i=1 βi,
∏g

i=1 βi ∈ Z. Also we have αi + ᾱi ≥ −2
√
q, hence αi + ᾱi + 2

√
q ≥ 0, thus

βi > 0. Also:

1

g

g∑
i=1

βi ≥
( g∏
i=1

βi

)1/g

≥ 1 ,

hence:
g∑
i=1

βi ≥ g ⇒
g∑
i=1

(αi + ᾱi) ≥ −g
[
2q1/2

]
,

since
∑g

i=1 βi = g
(
1 + [2q1/2]

)
+
∑g

i=1(αi + ᾱi). Then we obtain:

#X(Fq) = q + 1−
g∑
i=1

(αi + ᾱi) ≤ q + 1 + g[2q1/2] ,

hence completing the proof.

Example 8.10. Let g = 3 and q = 8, so X/F8 is a smooth projective curve of genus 3.
Then our result implies that:

#X(F8) ≤ 8 + 1 + 3[2
√

8] = 24 < 25 = [8 + 1 + 6
√

8] .

Next we produce certain bounds on Aq.

Claim 8.11. We have:

#X(Fq) ≤
1

2

{√
(8q + 1)g2 + (4q2 − 4q)g + (2q + 2− g)

}
,

and hence:

Aq ≤
√

2q.
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Proof. Using Riemann Hypothesis, we obtain:

#X(Fq) ≤ #X(Fq2) = q2 + 1−
g∑
i=1

(α2
i + αi

2) = q2 + 1 + 2gq −
g∑
i=1

(αi + αi)
2

≤ q2 + 1 + 2gq − 1

g

( g∑
i=1

(αi + αi)
)2

= q2 + 1 + 2gq − 1

g

(
#X(Fq)− (q + 1)

)2
.

Expressing #X(Fq) from above yields (1). To obtain (2), we notice that (1) implies

Nq(g) ≤ 1

2

{√
(8q + 1)g2 + (4q2 − 4q)g + (2q + 2− g)

}
,

then dividing by g and taking lim sup as g →∞, we obtain:

Aq ≤ lim sup
g→∞

1

2

{√
(8q + 1) +

4q2 − 4q

g
+

2q + 2

g
− 1

}
=

1

2

{√
8q + 1− 1

}
≤
√

2q,

hence proving (2).

Theorem 8.12 (Drinfeld - Vladut). Aq ≤
√
q − 1.

Proof. We have #X(Fqn) = qn + 1 −
∑g

i=1(αni + ᾱi
n), where, by Riemann Hypothesis,

αi = q1/2ωi, with |ωi| = 1, hence ωiω̄i = 1. Then:

0 ≤
g∑
i=1

∣∣1 + ωi + ω2
i + . . .+ ωki

∣∣2 =

g∑
i=1

( k∑
r=0

ωri

)( k∑
s=0

ω̄i
s

)
=

g∑
i=1

k∑
r,s=0

ωri ω̄i
s = (k + 1)g +

k∑
t=1

(k + 1− t)
g∑
i=1

(
ωti + ω̄i

t
)

= (k + 1)g +
k∑
t=1

(k + 1− t) 1

qt/2
(
qt + 1−#X(Fqt)

)
≤ (k + 1)g +

k∑
t=1

(k + 1− t) 1

qt/2
(
qt + 1−#X(Fq)

)
.

This implies:

#X(Fq) ≤

{∑k
t=1

(k+1−t)
qt/2

(qt + 1) + (k + 1)g
}

{∑k
t=1(k + 1− t)q−t/2

} .
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Dividing both sides of the above inequality by g and letting g →∞ yields:

Aq ≤
k + 1∑k

t=1(k + 1− t)q−t/2
=
{ 1

k + 1

k∑
t=1

(k + 1− t)q−t/2
}−1

=
{ k∑

t=1

q−t/2 − 1

k + 1

k∑
t=1

tq−t/2
}−1

then notice that
∑k

t=1 tq
−t/2 is convergent as k →∞, hence limk→∞

1
k+1

∑k
t=1 tq

−t/2 = 0.

Also, limk→∞
∑k

t=1 q
−t/2 = 1

q1/2−1
, hence the result follows.

There is also a method of Oesterle that, given g and q, extracts the best bound out
of the formulas. Let Oeq(g) be the best such bound. In many cases it is known that
Nq(g) = Oeq(g). There are, however, a few cases where it is known that Nq(g) < Oeq(g).
In these regards, one can ask the following questions.

Exercise 8.1. What is Nq(g)?

Exercise 8.2. Is Nq(g) = Oeq(g) for infinitely many g, given q?

Exercise 8.3. What is Aq?

There is something known in regards to the third question.

Theorem 8.13 (Ihara - Tsfasman - Vladut - Zink). If q is a square, then:

Aq =
√
q − 1 .

Example 8.14. 2
9
≤ A2 ≤

√
2− 1.

It has also been proved that there exists C > 0 such that Aq ≥ C log q, for all q, as well
as there exists B > 0 such that Ap3 ≥ Bp, when p is prime.

Exercise 8.4. What is the average number of points of a curve of genus g over Fq?

9. Week Nine

We have been using the following fact:

Theorem 9.1. If X/Fq is a projective smooth curve, then there exist d ≥ 1, c > 0 such
that

|#X(Fqnd)− qnd| ≤ cqnd/2 ∀n ≥ 1

Now we’ll prove it. First we’ll prove the upper bound: #X(Fqnd) ≤ qnd + cqnd/2

Remark 9.2. Weil gave 2 proofs of RH: one using the Jacobian and one using X×X which
were simplified by Mattuck and Tate and later Grothendieck. In the 1970’s, Stepanov
introduced an elementary method which led to proofs by Schmidt, Bombieri. We’ll present
a variant of a proof by Stöhr and Voloch.

Proposition 9.3. Suppose X : f(x, y) = 0 is a plane curve of degree d over Fq that also
satisfies one of the following:
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1. d < p = charFq
2. d2y/dx2 6= 0
3. there exists P ∈ X such that the tangent to X at P has order of contact exactly 2

then #X(Fq) ≤ d(d+ q − 1)/2

What does 2 mean? Since we have f(x, y) = 0 then dy
dx

= −∂f/∂x
∂f/∂y

and d2y
dx2 = d

dx
( dy
dx

).

A derivation on a field F is a map D : F→ F satisfying:

1. D(a+ b) = Da+Db, ∀a, b ∈ F
2. D(ab) = aDb+ bDa, ∀a, b ∈ F

Once we know dy/dx we can take derivations in Fq(x, y).

Proof. Let

F = (xq − x)
∂f

∂x
+ (yq − y)

∂f

∂y

=
∂f

∂y
(yq − y − dy

dx
(xq − x))

F vanishes at rational points of X. In fact F vanishes doubly.

d

dx

(
yq − y − dy

dx
(xq − x)

)
= 0− dy

dx
− dy

dx
(−1)− d2y

dx2
(xq − x)

= −d
2y

dx2
(xq − x)

vanishes at rational points.
Now F 6≡ 0 since F ′ 6≡ 0, as that would imply d2y/dx2 ≡ 0 by the above. We

learned that F has double zeroes at the rational points of X and it is not identically zero.
Moreover, degF = d+ q − 1. The total number of common zeroes of f and F is at most
d(d+ q − 1) by Bézout. Since rational points are counted twice we get the result.

Consider P2 → P
5 given by:

(x0 : x1 : x2)→ (x0x1 : x0x2 : x1x2 : x2
0 : x2

1 : x2
2)

If you have a curve in P2, you have a curve in P5. So a curve can be put into many Pn.
Isomorphic images should be counted the same.

Suppose X ⊆ Pn. What’s the analog of F as above (vanishes at rational points, etc)?
Look at X ∩ An with coordinates x1, . . . , xn. Then

(xq1 − x1), . . . , (xqn − xn)

have zeroes at rational points. Now choose some function x and X. Define F as follows:

F =

∣∣∣∣∣∣∣∣∣
(xq1 − x1) (xq2 − x1) . . . (xqn − x1)

dx1

dx
dx2

dx
. . . dxn

dx
...

...
. . .

...
dn−1x1

dxn−1
dn−1x2

dxn−1 . . . dn−1xn
dxn−1

∣∣∣∣∣∣∣∣∣
The motivation for the above function are the following considerations. Our initial F is

the equation of the tangent line at (x, y) evaluated at (xq, yq) which is the image of (x, y)
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under the Frobenius map. More generally we consider, for curves in Pn, the equation of
the osculating hyperplane to to the curve at a point P evaluated at the Frobenius of P .

Our strategy will be:

1. Show that F vanishes at the rational points of X with multiplicity at least n.
2. Bound total number of zeroes of F by bounding number of poles.
3. Choose the embedding such that F 6≡ 0. (This is not always the case.)
4. Choose the best embedding (We get different bounds for different embeddings.)

The number of poles of F equals d(q + n) + (2q− 2)(1 + 2 + · · ·+ (n− 1)) In the most
optimistic situation we get

n#X(Fq) ≤ #(zeroes of F)

= #(poles of F)

≤ d(q + n) + (2q − 2)(1 + 2 + · · ·+ (n− 1))

Riemann-Roch will allow us to take d = n+ q. In this case the bound is

#X(Fq) ≤
(
(n+ g)(q + n) + (g − 1)n(n− 1)

)
/n

= q + 1 + g
( q
n

+ n
)

With n = q1/2 this gives #X(Fq) ≤ q + 1 + 2gq1/2.
There are a number of things to be worked out first. For instance, in characteristic 2,

d2y
dx2 ≡ 0 always!

d2

dx2

∑
anx

n =
∑

ann(n− 1)xn−2 = 0

To get second derivative divide by 2

1

2

d2

dx2

∑
anx

n =
∑

an
n(n− 1)

2
xn−2

Let k be a field. Define Hasse derivatives (or higher derivatives) D(r) : k[[x]]→ k[[x]] for
r ≥ 1 as follows:

D(r)

( ∞∑
n=0

anx
n

)
=
∑

an

(
n

r

)
xn−r

We then get:

r!D(r) =
dr

dxr

Properties of D(r)

1. D(r)(u+ v) = D(r)(u) +D(r)(v)
2. D(r)(uv) =

∑r
j=0 D

(j)(u)D(r−j)(v)

3. D(r)D(s) =
(
r+s
r

)
D(r+s) = D(s)D(r)

Proof. The first one is obvious.
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2) Let u =
∑
anx

n, v =
∑
bnx

n. The coefficient of xn in uv is
∑n

i=0 aibn−i. The
coefficient of xn−r in D(r)uv is

(
n
r

)∑n
i=0 aibn−i. The coefficient of xn−r in D(j)uD(r−j)v is∑n−r

l=0

(
l+j
j

)
al+j

(
n−l−j
r−j

)
bn−l−j. The coefficient of xn−r in

∑
j D

(j)uD(r−j)v is therefore

n∑
i=0

aibn−i

i∑
j=i−n+r

(
i

j

)(
n− i
r − j

)
.

The inner sum is equal to
(
n
r

)
which gives the result.

Part 3 is similar to part 2.

Property 2 implies, by induction,

D(r)(u1 · · ·uj) =
∑

s1+···+sj=r
si≥0

D(s1)(u1) · · ·D(sj)(uj)

Lemma 9.4. If m,n ∈ Z, m =
∑
mip

i, n =
∑
nip

i, 0 ≤ mi, ni ≤ p − 1, then
(
n
m

)
≡ 0

(mod p) if and only if mi ≤ ni,∀i.

Proof. Consider (1 + x)n ∈ Fp[x]. The coefficient of xm is
(
n
m

)
. On the other hand:

(1 + x)n =
d∏
i=0

(1 + x)nip
i

=
d∏
i=0

(1 + xp
i

)ni

=
d∏
i=0

( bi∑
ki=0

(
ni
ki

)
xkip

i

)
=

∑
0≤ki≤ni

(
n0

k0

)
. . .

(
nd
kd

)
xk0+k1p+···+kdpd

We really have proven more:
(
n
m

)
≡
∏d

i=0

(
ni
mi

)
(mod p).

Corollary 9.5. If n ≡ 0 (mod pf ) and r < pf then D(r)xn = 0 in Fp[[x]].

In particular D(r) ≡ 0 on k[[xp
f
]] if r < pf , p = char k > 0.

Corollary 9.6. D(r) extends uniquely to k((x)).

Proof. If pf > r we use,

D(r)(
a

b
) = d(r)(

abp
f−1

bpf
) =

1

bpf
D(r)(abp

f−1) .

This proves uniqueness and using equality of both ends gives existence.

Note that D(r) maps k[x] to itself and, by the proof of the above corollary, it also maps
k(x) to itself.

Theorem 9.7. Suppose F/k(x) is a finite separable extension then D(r) extends uniquely
to F (satisfying 1, 2, 3).
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Proof. Assume k is algebraically closed, without loss of generality. We’ll prove later that
there exists α ∈ k such that F embeds in k((x − α)). Since F is separable F = k(x, y)
with f(x, y) = 0 and ∂f

∂y
6≡ 0. Then we can extend D(r) to k((x − α)). We note that

D
(r)
x = D

(r)
x−α in k(x).

So we get a map D(r) : k((x− α))→ k((x− α)) satisfying 1, 2, and 3, coinciding with
the usual D(r) on k(x). What happens to F? We’ll prove that D(r)(F ) ⊆ F . To prove
that, it is enough to show that D(r)(y) ∈ F , y defined above.

We will prove more; namely

D(r)(y) =
Fr(x, y)

(∂f/∂y)2r−1

where Fr(x, y) ∈ k[x, y] is uniquely determined by f and r and of degree at most (2d −
3)r − d+ 2 for r ≥ 1 where d = deg f(x, y). This will be useful later.

Notation: ∂f
∂y

= fy.

We’ll prove the theorem by induction. When r = 1:

f(x, y) = 0⇒fx + fy
dy

dx
= 0

D(1)y =
dy

dx
=
−fx
fy

So the formula holds. Now let r > 1.

0 = f 2r−2
y D(r)(f(x, y)) = f 2r−2

y D(r)

( ∑
i+j≤d

aijx
iyj
)

=
∑
i+j≤d

aij

r∑
s=0

D(r−s)xi
∑

s1+···+sj=s

f 2r−2
y D(s1)(y) . . . D(sj)(y)

Applying the induction hypothesis,

0 =
∑
i+j≤d

aij

r∑
s=0

D(r−s)xi
∑

s1+···+sj=s
0≤si<r

f 2r−2
y

Fs1 . . . Fsj

f
2s−α(s1,...,sj)
y

+ f 2d−1
y D(r)y

with α(s1, . . . sj) = #{i|si > 0} and D(0)y = y = F0.
Let

Fr = −
∑
i+j≤d

aij
r∑
s=0

D(r−s)xi
∑

s1+···+sj=s
0≤si<r

f 2r−2s+α(s1,...,sj)−2
y Fs1 . . . Fsj .

We need to show that Fr is a polynomial in x and y and that degFr ≤ (2d− 3)r− d+ 2.
It is enough to show that 2r − 2s− 2 + α(s1, . . . , sj) ≥ 0. This is clear if s < r. If s = r,
we want to show α(s1, . . . , sj) ≥ 2. So when is α = 0 or α = 1?
α = 0 ⇒ si = 0,∀i ⇒

∑
si = 0 = s = r and we are assuming that r ≥ 1, which leads

to a contradiction, so α 6= 0.
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α = 1⇒ si = 0 for all i such that i 6= i0, so r = s =
∑
si = si0 , but r > si, which leads

to a contradiction, so α 6= 1.
Thus we have proved that Fr is a polynomial.
To estimate the degree of Fr, note that only the terms with r−s ≤ i appear in the sum

defining Fr, since D(r−s)xi = 0 otherwise. The degree of each such summand is at most

i− r + s+ (d− 1)(2r − 2s+ α− 2) +
∑
si>0

(
(2d− 3)si − (d− 2)

)
+
∑
si=0

1

= i− r + s+ (d− 1)(2r − 2s+ α− 2) + (2d− 3)s− (d− 2)α + j − α
= (2d− 3)r + i+ j − 2(d− 1)

We note that i+ j ≤ d, so we have proved the bound on the degree.

10. Week Ten

Lemma 10.1. Let f(X, Y ) be a polynomial with coefficients in a field k. Suppose (x0, y0)
in k2 is such that f(x0, y0) = 0 and ∂f

∂y
(x0, y0) 6= 0. Then there exists a power series

y =
∑∞

i=0 yi(x − x0)i, with yi ∈ k, such that f(x, y) = 0; i.e., f(x0 + (x − x0), y) = 0 in
k[[x− x0]].

Proof. Replacing x by x − x0, we may assume that x0 = 0. We will prove by induction
on n that there exist y0, y1, . . . , yn such that f(x, y0 + y1x+ · · ·+ ynx

n) ≡ 0 (mod xn+1).
If this is true for all n, then

y =
∞∑
i=0

yix
i

is such that f(x, y) = 0 in k[[x]].
The case n = 0 is just the hypothesis, f(0, y0) = 0. Assume the induction hypothesis

for n. By assumption, there exists c ∈ k such that,

f(x, y0 + · · ·+ ynx
n) ≡ cxn+1 (mod xn+2).(1)

Also,

f(x, y0 + y1x+ · · ·+ yn+1x
n+1) ≡ f(x, y0 + y1x+ · · ·+ ynx

n)

+
∂f

∂y
(x, y0 + y1x+ · · ·+ ynx

n)yn+1x
n+1 (mod xn+2).

(2)

Combining the above:

f(x, y0 + y1x+ · · ·+ yn+1x
n+1) ≡ cxn+1 +

∂f

∂y
(x, y0 + y1x+ · · ·+ ynx

n)yn+1x
n+1 (mod xn+2)

≡ cxn+1 +
∂f

∂y
(0, y0)yn+1x

n+1 (mod xn+2)

≡ (c+
∂f

∂y
(0, y0)yn+1)xn+1 (mod xn+2)
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So just take

yn+1 =
−c

∂f
∂y

(0, y0)
.

Lemma 10.2. Suppose y ∈ Fq[[x]]. Then

yq − y =
∞∑
r=1

(D(r)y)(xq − x)r .

(Note: y ∈ Fq[[x]] implies that the constant coefficient of yq − y is zero, hence we can
start the power series at r = 1.)

Remark. The ring of power series has a topology. If

y =
∞∑
i=0

aix
i and z =

∞∑
i=0

bix
i ,

define d(y, z) = e−n if ai = bi for i < n and an 6= bn and d(y, z) = 0 if y = z. It is trivial
to check that this is a metric.

Proof. Note that both sides are continuous functions of y (in the sense of the above
metric). Also, both sides are Fq-linear as functions of y. So it is enough to show that the
above equality holds for elements in a basis. We take the basis xm,m = 0, 1, 2, . . . . The
left-hand side of the equality, for y = xm, is xqm − xm.

The right-hand side is

∞∑
r=1

(D(r)xm)(xq − x)r =
m∑
r=1

(
m

r

)
xm−r(xq − x)r

= (xq − x+ x)m − xm

= xqm − xm .

So we have equality.

Proposition 10.3. Suppose y1, . . . , yn ∈ Fq[[x]] and let

F = det


y1
q − y1 · · · yn

q − yn
Dy1 · · · Dyn

...
. . .

...
D(n−1)y1 · · · D(n−1)yn


F has a zero of order at least n at x = 0, and the order is exactly n if and only if

∆ = det (D(i)yj(0))i,j=1,··· ,n 6= 0 .

In particular, when ∆ 6= 0 we get F 6≡ 0.
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Proof. Use the previous lemma. Add to the first row of the matrix defining F the ith row
times −(xq − x)i for i = 1, · · · , n− 1. This obviously will not affect F . Then:

F = det


y1
q − y1 −

∑n−1
r=1 (D(r)y1)(xq − x)r · · · yn

q − yn −
∑n−1

r=1 (D(r)yn)(xq − x)r

Dy1 · · · Dyn
...

. . .
...

D(n−1)y1 · · · D(n−1)yn


Now use the lemma, which gives:

F = det


∑∞

r=n(D(r)y1)(xq − x)r · · ·
∑∞

r=n(D(r)yn)(xq − x)r

Dy1 · · · Dyn
...

. . .
...

D(n−1)y1 · · · D(n−1)yn


All terms in the first row are divisible by xn, so F is divisible by xn. We have

∞∑
r=n

(D(r)y)(xq − x)r ≡ D(n)y(xq − x)n (mod xn+1)

≡ D(n)y(−x)n (mod xn+1)

≡ (D(n)y)(0)(−1)nxn (mod xn+1) .

Therefore the coefficient of xn in F is

det


D(n)y1(0)(−1)n · · · D(n)yn(0)(−1)n

Dy1(0) · · · Dyn(0)
...

. . .
...

D(n−1)y1(0) · · · D(n−1)yn(0)

 = ∆

We aim to prove the following:

Theorem 10.4. Let X be a smooth projective curve over Fq of genus g. There exist
d ≥ 1 and C > 0 such that, for all m ≥ 1, #X(Fqmd) ≤ qmd + Cqmd/2.

Proof. Let K = Fq(X) be the function field of X. Choose x ∈ K such that K/Fq(x) is
finite and separable. Then, by the primitive element theorem, there exists y ∈ K such
that K = Fq(x, y). So, there exists f ∈ Fq[x, y] such that f(x, y) = 0. Also, ∂f

∂y
6= 0

because this is a separable extension (i.e., we can take f to be the minimal polynomial
for y over Fq[x]).

Let H be a positive divisor such that all poles of x and y are on the support of H; that
is, such that x and y only have poles at points that appear in H. Take d sufficiently large
so that there exists P = (x0, y0) ∈ X(Fqd) such that P is not in the support of H and

that ∂f
∂y

(P ) 6= 0. (Since ∂f
∂y
6≡ 0, this is possible).

Choose y1, · · · , yn in L(kH) for some k as follows. Choose yi such that ordP (yi) = i.
(ordP denotes the order of multiplicity.) To show that this is possible consider

L(kH) ⊇ L(kH − P ) ⊇ L(kH − 2P ) ⊇ L(kH − 3P ) ⊇ · · ·
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Elements in L(kH − iP ) have a zero of order at least i at P . So elements in L(kH −
iP ) \ L(kH − (i + 1)P have a zero of order exactly i at P . Provided L(kH − iP ) 6=
L(kH − (i+ 1)P ), we are free to choose yi.

The Riemann-Roch Theorem yields, for k degH − i > 2g − 1,

l(kH − iP ) = k degH − i+ 1− g
and

l(kH − (i+ 1)P ) = k degH − i− 1 + 1− g − i− 1 > 2g − 2 .

As long as i < k degH − 2g + 1, we can pick yi. Now let

Fm = det


y1
qdm − y1 · · · yn

qdm − yn
Dy1 · · · Dyn

...
. . .

...
D(n−1)y1 · · · D(n−1)yn

 .

Our goal is to get n = qdm/2. (Without loss of generality, d is even.) We can reach this
value of n if qdm/2 < k degH − 2g + 1. Take k to be the smallest integer satisfying this
inequality.

If the yi’s are chosen as above, then Fm 6= 0 and ordQ Fm ≥ n if Q ∈ X(Fqdm) is such
that y1, . . . , yn are power series in x−x(Q). We’ll prove later that the number of Q’s not
satisfying this is bounded independently of m, say by some constant C1. In this event,

#X(Fqdm) ≤ C1 + degH + degFm/n .

Lemma 10.5. There exists C2, independent of m, such that for all r ≥ 1, D(r)yi ≤
deg yi + rC2.

Assuming the lemma, if yi ∈ L(kH), then deg yi ≤ k degH and

Fm =
∑
σ

(yq
md

σ(1) − yσ(1))Dy
(2)
σ(2) · · ·Dy

(n)
σ(n)

Thus:

degFm ≤ qmd(k degH) + k degH + C2 + · · ·+ k degH + (n− 1)C2

= (qmd + n− 1)k degH +
n(n− 1)

2
C2

#X(Fqdm) ≤ C1 + degH +
1

n
((qmd + n− 1)k degH +

n(n− 1)

2
C2).

Recall that k was chosen to be the smallest integer such that qdm/2 < k degH + 2g − 1.
Hence (k − 1) degH + 2g − 1 ≤ qdm/2. Then k degH = qdm/2 + O(1). (Remember:
n = qdm/2.) Therefore

#X(Fqdm) ≤ C1 + degH + (qmd + n− 1)(1 +O(q−md/2)) +
n− 1

2
C2

= qmd +O(1) +O(qmd/2) .
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So all that is left to prove is the lemma:

Proof. Let yi ∈ Fqd(x, y), f(x, y) = 0. Let δ be the degree in y of f(x, y). Any element yi
can be written

yi =
δ−1∑
j=0

aijy
j, aij ∈ Fqd .

We need another lemma:

Lemma 10.6. Suppose x0 ∈ Fqd is such that f(x0, y) = 0 has δ distinct roots and that, for

each such root y0, ∂f
∂y

(x0, y0) 6= 0. Let z =
∑δ−1

i=0 biy
i, bi ∈ Fq(x) be such that ord(x0,y0) z ≥ 0

for all y0 such that f(x0, y0) = 0. Then ordx0bi ≥ 0 for all i.

Proof. Suppose by way of contradiction that some bi has a pole at x0 and let −r =
min{ordx0 bi}, r > 0. Thus ord(x0,y0)(x− x0)rbi ≥ 0 for all i. Observe that

(x− x0)rz =
δ−1∑
i=0

(x− x0)rbiy
i(3)

vanishes at (x0, y0). Let βi be the value of (x − x0)rbi at x = x0. βi ∈ F q and not all βi
are 0. The above equation implies that

∑δ−1
i=0 βiy0

i = 0 for all y0 satisfying f(x0, y0) = 0.

However,
∑δ−1

i=0 βiy
i is a nonzero polynomial with degree less than or equal to δ− 1, since

not all βi are 0. So it cannot have δ roots, a contradiction.

We want to show degD(r)yi ≤ deg yi + rC2. We have

degD(r)yi ≤
δ−1∑
j=0

D(r)aijy
j .

It will be enough to show that

degD(r)aij ≤ deg aij + rC2

and

degD(r)y ≤ deg y + rC2 .

For a rational function a, the order of a pole of D(r)a at x = x1 grows linearly with r. The
functions aij only have poles in the xj’s for which there exists y1 such that ∂f

∂y
(x1, y1) = 0.

So the number of these xj’s is uniformly bounded.
Recall

D(r)y =
Fr

(∂f
∂y

)2r−1

for some Fr ∈ Fq[[x]] with degFr ≤ (2 deg f − 3)r − (deg f − 2). So degD(r)y grows
linearly with r.
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11. Week Eleven

To complete the Riemann hypothesis for curves, we need to show that given X/Fq,
∃c > 0, d ≥ 1 such that ∀n ≥ 1,

|#X(Fqnd)− qnd| ≤ cqnd/2 .

We have proved the upper bound #X(Fqnd)− qnd ≤ cqnd/2. So now we want to prove the
lower bound. We will show that, for a given n, there are curves X1, . . . , Xm defined over
Fqn , with X1 = X, such that

1

m

m∑
i=1

#Xi(Fqn) = qn +O(q
n
2 ) ,(4)

where the O constant is independent of n. We can apply the upper bound, proved before,
to the curves X2, . . . , Xm, and get

#X(Fqnd) = mqnd −
m∑
i=2

#Xi(Fqnd) +O(q
nd
2 )

≥ mqnd −
m∑
i=2

(qnd + cq
nd
2 ) +O(q

nd
2 ) = qnd +O(q

nd
2 ) .

Observe that the more curves we have, the worse is the constant in the lower bound (it
depends on m). Before doing the general case, let’s look at an example.

Example 11.1. Let X1/Fq be the curve defined by y2 = f(x), where f(x) ∈ Fq[x].
Suppose that q is odd. Take c ∈ Fq∗ \ (Fq

∗)2 ((Fq
∗)2 is a subgroup of Fq

∗ of index 2).
Consider X2/Fq defined by y2 = cf(x). Then we claim that

#X1(Fq) + #X2(Fq) = 2(q + 1)

counting the points at infinity too. To see this, observe that if, x ∈ Fq is such that f(x) is
a square in Fq, then we get 2 points in X1 and 0 points in X2. If, on the other hand, f(x)
is not a square in Fq, then we get 0 points in X1 and 2 points in X2. Finally, if f(x) = 0
then we get 1 point in X1 and 1 point in X2. So, adding all those points with the points
at infinity of X1 and X2, we get 2(q + 1), as desired.

The example above gives us the oportunity to introduce a new definition:

Definition 11.2. Let X be a curve over a field K. Suppose that Y is another curve
defined over K such that X and Y are isomorphic over K, the algebraic closure of K.
Then we call Y a twist of X (in the example above, X2 is a twist of X1). If X and Y are
isomorphic over K, we say that the twist is trivial.

Now, suppose that Y is a non-trivial twist of X and assume that K is perfect. Let
φ : X → Y be an isomorphism over K. (The coefficients of the expressions that determine
φ cannot be in K, otherwise the twist would be trivial.)

We can take, for σ ∈ Gal(K/K), the map φσ : X → Y by making σ act on the
coefficients of the expressions that define φ. So we can consider φ−1 ◦ φσ : X → X,
φ−1 ◦ φσ ∈ Aut(X). Call it ξσ.

52



Observe that ξτσ = φ−1 ◦ φσ ◦ (φ−1)σ ◦ φτσ = (φ−1 ◦ φσ) ◦ (φ−1 ◦ φτ )σ = ξσξτ
σ. Things

like this one are called Galois 1-cocycles with coefficients in Aut(X).
If K = Fq, it is enough to know the value of ξσ when σ is the Frobenius automorphism

(σ(x) = xq). to determine the whole cocycle, since the Frobenius automorphism generates
the Galois group.

Theorem 11.3. Given X/Fq and g ∈ Aut(X) of finite order, there exists a twist X(g) of
X which is isomorphic to X over Fqord(g) and, moreover, for every finite subgroup H of
Aut(X),

1

|H|
∑
h∈H

#X(h)(Fq) = #(X/H)(Fq) .

In the proof of the theorem, It will become clear what X/H means. Before proving the
theorem, let’s see an example.

Example 11.4. Let X be defined by y2 = f(x), and g ∈ Aut(X) given by g(x, y) =
(x,−y). Take H = {id, g}. Then X/H = P

1, X(g) is given by y2 = cf(x). Take
φ : X → X2 given by (x, y) 7→ (x,

√
cy).

If σ = Frobenius, then φ−1 ◦ φσ(x, y) = φ−1(x,−
√
cy) = (x,−y) = g(x, y). Observe

that φσ(x, y) = (x, σ(
√
c)y) = (x, (

√
c)qy) = (x,−

√
cy).

Proof. Let L be the function field of X over Fq, L = Fq(X). Let H be a finite subgroup
of Aut(X). So H acts on L. Let K = LH , the fixed field of L by the action of H. So
Fq ⊆ K ⊆ L. Since [L : K] is finite, K is not a finite field (since L is not a finite field). So
K/Fq is transcendental and since K ⊆ L, K must be finitely generated of transcendence
degree 1 over Fq.

So K is the function field of some curve over Fq. That’s what we call X/H.
Let L′ = Fqm(X), the function field of X over Fqm , where m = |H|. Note that Fqm ⊆ L′,

L ⊆ L′ and L′ = LFqm .
There is an automorphism σ of L′ such that σ|Fqm = Frobenius and σ|L = id.

Define, for h ∈ H, the field L(h) = (L′)〈σ◦h〉 (we can think of h acting on L′ by h|Fqm =
id).

Claim 11.5. L(h) ∩ Fqm = Fq, L
(h) is transcendental over Fq and L(h)

Fqm = L′

So L(h) is the function field of some curve over Fq. That’s what we call X(h) (from
L(h) ∩ Fqm = Fq, L

(h) transcendental over Fq and the equivalence between curves and
function fields).

From L(h)
Fqm = L′ we get that X and X(h) are isomorphic over Fqm .

Proof. L(h) ∩ Fqm = Fq:
Let α ∈ L(h) ∩ Fqm . We have that αq = σ(α) because α ∈ Fqm and σ|Fqm is the

Frobenius.
Since α ∈ L(h) we get σ ◦ h(α) = α. But σ ◦ h(α) = σ(α). So, from both equations, we

get αq = α, so α ∈ Fq.
L(h) is transcendental over Fq :
To prove this, let’s prove that σ ◦ h has finite order.

53



σ|L = id, so σ and h commute on L. Also, h|Fqm = id, so σ and h commute on Fqm .
Hence σ and h commute on L′. Since σ and h have finite order, this implies that σ ◦ h
has finite order.
L(h)

Fqm = L′: we leave as an exercise.

So let’s go back to the proof of the theorem. Now, L(h)
Fqm = L′ ⇒ X(h) is isomorphic

to X over Fqm .
L = {z : X → P

1}

X

π
�� ""EEEEEEEEE

X/H //
P

1

For L′ we have the same picture over Fqm .

Suppose we have a point P1 ∈ X(Fq) and that π(P1) ∈ X/H(Fq). This implies that
π(σ(P1)) = π(P1), which implies that σ(P1) = h(P1) for some h ∈ H.

If the orbit of P1 has m points then h is unique.
z ∈ L′, σ(xi(P1)) = xi(σ(P1))
σ(z(P1)) = σ(z)(σ(P1)) = σ(z)(h(P1)) = (h ◦ σ)(z)(P1)
If h ◦ σ(z) = z (i.e z ∈ L(h)) then σ(z(P1)) = z(P1)⇒ z(P1) ∈ Fq.
Also, P1 ∈ X(h)(Fq) ⇔ σ(P1) = h(P1) (assuming that P1 ∈ X(Fq) and π(P1) ∈

X/H(Fq)).

Exercise 11.1. Prove that L′ = L(h)
Fqm . For this, it is enough to prove that L′ =

L(h)(KFqm), since K ⊂ L(h) (observe that KFqm = (L′)H). Hint: Use Galois theory.

Example 11.6. Curves of the type ym = f(x) with (m, p) = 1, where p is the character-
istic of the field, correspond to Kummer extensions, and curves of the type yp− y = f(x)
with p the characteristic of the field correspond to Artin-Schreier extensions.

Twists of ym = f(x) are of the form ym = cf(x), where c is a generator of some coset
of (Fq

∗)m in Fq
∗. Twists of yp − y = f(x) are of the form yp − y = f(x) + c, where c is a

generator of a coset of ℘(α) = αp − α, ℘(Fq) in Fq.

Back to the proof:
We have a curve X/Fq, K the function field of X. Let L be the Galois closure of

K/Fq(x). So L is the function field of some Y .

Y

��

L

X

��

K

P
1 Fq(x)
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We proved that #Y (g)(Fq) ≤ q + cq1/2. Also ∃ c > 0, d ≥ 1 such that, for all n,

#Y (g)(Fqnd) ≤ qnd + cq
nd
2 .

Then
1

|G|
∑
g∈G

#Y (g)(Fqnd) = #P1(Fqnd) = qnd + 1⇒

#Y (g)(Fqnd) ≥ qnd − c′q
nd
2 .

1

|H|
∑
h∈H

#Y (h)(Fqnd) = #X(Fqnd) ≥ qnd − c′′q
nd
2 ,

where c′ = c(|G| − 1) and c′′ = c (|G|−1)
|H| .

Exercise 11.2. Let V be a vector space over a field K, char(K) = 0, G a finite group
acting on V , φ : V → V such that φ commutes with G. Then

1

|G|
∑
g∈G

Tr(φ ◦ g) = Tr(φ|V G) ,

where V G = {v ∈ V |gv = v, ∀g ∈ G}.
This exercise can be used to give a cohomological proof of the theorem.

12. Week Twelve

If X is a curve over Fq of genus g, then the Riemann hypothesis tells us that

#X(Fq) ≤ q + 1 + 2 g q1/2.

But, in the proof we were not concerned with the constants, and so we can try to improve
this bound.

Definition 12.1. Assume that q is odd. A hyperelliptic curve over Fq, say X, is a curve
given by an equation of the form y2 = f(x) where f ∈ Fq[x], with no repeated roots, i.e.,
the curve is smooth in the affine plane.

We actually consider the projective closure of these curves, but note that the point (or
points) at infinity is (or are) singular.

Counting just affine points, we have:

#{y2 = f(x) | x, y ∈ Fq} = #{f(x) = 0 | x ∈ Fq}+ 2 ·#{f(x) ∈ (F×q )2 | x ∈ Fq} .

On a non-singular model (i.e., a non-singular curve with the same function field), if d
is odd, then the curve has one point at infinity. If d is even, it has two points at infinity.
The points at infinity are Fq rational if and only if the leading coefficient of f is a square.
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Using the Riemann-Roch theorem, one can prove that, if deg f = d, the genus g of the
curve is

g =


d− 1

2
, if d is odd

d− 2

2
, if d is even .

With the same notation from the previous lectures, let’s choose yi = xi, for i =
1, . . . , n− 1 and yn = y (for some chosen n). Then

W = det


yq1 − y1 . . . yqn − yn
Dy1 . . . Dyn

...
. . .

...
D(n−1)y1 . . . D(n−1)yn


= yq − y −

n−1∑
i=1

D(i)y(xq − x)i .

We know that W has a zero of order at least n at every rational point P of X with
x− x(P ) being a local parameter (i.e., f(x(P )) 6= 0).

Lemma 12.2. We have

D(i)y =
Fi(x)

y2i−1
, i ≥ 1 ,

where Fi(x) ∈ Fq[x] and degFi(x) ≤ i(d − 1). Moreover, if ai denotes the coefficient of
xi(d−1) in Fi(x), and α denotes the leading coefficient of f(x), then, for i < p,

ai =
1

i!

i−1∏
j=0

(d
2
− j
)
αi .

Proof. We prove the lemma by induction. For i = 1, applyingD to both sides of y2 = f(x),
we have 2 y Dy = f ′(x), i.e.,

Dy =
f ′(x)/2

y
,

and the formulas are true.
We prove the first part of the lemma first: suppose the lemma is true for i − 1 ≥ 1.

Then

D(i)(y2) = 2 y D(i)y +
i−1∑
j=1

D(j)y D(i−j)y = 2 y D(i)y +
i−1∑
j=1

Fj(x)Fi−j(x)

y2i−2
.

Note that deg(Fj(x)Fi−j(x)) ≤ i(d−1) and deg(f(x)i−1 D(i)f(x)) ≤ i(d−1). So, defining

Fi(x) ≡
f(x)i−1 D(i)f(x)−

∑i−1
j=1 Fj(x)Fi−j(x)

2
,
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we have degFi(x) ≤ i(d− 1) and

D(i)y =
Fi(x)

y2i−1
.

We now prove the part about the ai’s: assume the lemma true for i− 1 < p− 1. Then:

D(i)y =
1

i
D
(
D(i−1)y

)
=

1

i
D
(Fi−1(x)

y2i−3

)
=

1

i

[
DFi−1(x) y2i−3 − Fi−1(x) (2i− 3) y2i−4 f ′(x)/2y

y4i−6

]
=

1

i

[
DFi−1(x) f(x)− Fi−1(x) (2i− 3) f ′(x)/2

y2i−1

]
.

The coefficient of xi(d−1) is then

ai =
(i− 1)(d− 1) ai−1 α− ai−1 (2i− 3) dα/2

i

=
α

i

(d
2
− (i− 1)

)
ai−1 .

Since a1 = α d/2, one deduces that ai is as in the statement of the lemma.
(Note that we could use this argument to prove the first part of the lemma for i < p.)

Therefore, multiplying W by y2n−3 (to clear denominators), we have

P := y2n−3 W = y2n−3(yq − y)−
n−1∑
i=1

Fi(x) y2n−2i−2 (xq − x)i

= f(x)n+(q−3)/2 − f(x)n−1 −
n−1∑
i=1

Fi(x) f(x)n−i−1 (xq − x)i .

Then, P is a polynomial in x with a zero of order greater than or equal to n for every
x ∈ Fq, such that f(x) ∈ (F×q )2 (since W does and y 6= 0 for such x’s) and a zero of order
at least n− 1 if x ∈ Fq with f(x) = 0.

Also, since

degFi(x) f(x)n−i−1 (xq − x)i ≤ i (d− 1) + d (n− i− 1) + q i

= (q − 1) i+ d (n− 1) ≤ (q − 1) (n− 1) + d (n− 1) ,

we have,

degP ≤ max

{
d
(
n+

q − 3

2

)
, (n− 1)(q + d− 1)

}
If P 6≡ 0, we get:

n#{x ∈ Fq : f(x) ∈ (F×q )2}+ (n− 1) #{x ∈ Fq : f(x) = 0} ≤ degP .
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Ignoring the f(x) = 0 part:

#{x ∈ Fq : f(x) ∈ (F×q )2} ≤ max{d (n+ (q − 3)/2), (n− 1)(q + d− 1)}
n

.

The best n is bd/2−1c. We get a bound of the form (q−1+d) d/(d+2), which implies
that the number of points on the curve is less than or equal to 2(q − 1 + d) d/(d+ 2) + d
(the two terms in the maximum above are approximately equal).

This beats the Weil bound if, roughly, d > q1/2. It beats the trivial bound (2d + 2) if
d <
√

2q.

Now, if P ≡ 0, then W ≡ 0, what implies:

yq − y =
n−1∑
i=1

(D(i)y) (xq − x)i .

So, if x ∈ Fq, with f(x) = 0, we get y ∈ Fq (since the poles of D(i)y occur where
f(x) = 0). Thus:

#{x ∈ Fq : f(x) ∈ (F×q )2} ≥ q − d .

Lemma 12.3. If W ≡ 0, then nD(n)y ≡ 0.

Proof. We have

W = yq − y −
n−1∑
i=1

D(i)y (xq − x)i ≡ 0 ,

what implies:

0 ≡ DW = −Dy −
n−1∑
i=1

[
(i+ 1)D(i+1)y (xq − x)i +D(i)y i (xq − x)(i−1) (−1)

]
= nD(n)y (xq − x)n ,

since the sum is telescoping. Thus, nD(n)y ≡ 0.
Moreover, we have that D(n)y 6≡ 0 if n < d/2 < p. Indeed, by lemma 12.2,

an =
1

n!

n−1∏
i=0

(d
2
− i
)
αn.

We always have αn 6= 0, and if n < p, then n! 6= 0. Also, since n < d/2 < p,
∏n−1

i=0 (d/2−
i) 6= 0. Hence, in this situation, an 6= 0 and so D(n)y 6≡ 0. Then, if n < d/2 < p, by
lemma 12.3 we have that W 6≡ 0.

Theorem 12.4 (Lang-Weil). Let X ⊂ P
N be an absolutely irreducible variety defined

over Fq of dimension n and degree d. Then, there exists c1, c2 ∈ Z, depending on n and
d, such that

|#X(Fq)− qn| ≤ c1 q
n−1/2 + c2 .
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We will prove the theorem for the case of X ⊂ P3, smooth of dimension 2, also trying
to get good c1 and c2. Such X is given by zeros of a single homogeneous polynomial
f(x0, x1, x2, x3) ∈ Fq[x0, x1, x2, x3] of degree d, and such that for any P ∈ X, there exists
an i ∈ {0, 1, 2, 3}, such that (∂f/∂xi)(P ) 6= 0.

We denote the plane
3∑
i=0

∂f

∂xi
(P )xi = 0

by TPX, and we call if the tangent plane to X at P .
In this case, Deligne tells us that

#X(Fq) = q2 + 1 +

b1∑
i=1

(
αi +

q2

αi

)
+

b2∑
i=1

βi ,

where |αi| = q1/2 and |βi| = q. Thus,

|#X(Fq)− (q2 + 1)| ≤ b1(q3/2 + q1/2) + b1 q .

In P3, we have b1 = 0 and b2 = (d3 − 4d2 + 6d− 2), and the bound reduces to

|#X(Fq)− (q2 + 1)| ≤ q (d3 − 4d2 + 6d− 2) .

Now, let’s fix a line L and consider all planes H ⊃ L. For each such H we will look at
X ∩H.

The case d = 1 is trivial.
So, we can assume d ≥ 2 and then X 6= H for any H, and so X ∩H is a curve.
We can choose coordinates such that

L : x2 = x3 = 0.

Thus, H ⊃ L has the form

H : x3 = λx2, for some λ ∈ Fq
or

H : x2 = 0 .

Therefore, planes containing a fixed line form a P1. Then, there are exactly q + 1 such
planes defined over Fq.

The intersection X ∩H is given by the equation{
x3 = λx2

f(x0, x1, x2, x3) = 0
or

{
x3 = λx2

f(x0, x1, x2, λ x2) = 0

or {
x2 = 0

f(x0, x1, x2, x3) = 0
or

{
x2 = 0

f(x0, x1, 0, x3) = 0

Note that f(x0, x1, x2, λ x2) = 0 (or f(x0, x1, 0, x3) = 0) define a plane curve of degree d.
We need to understand how often this curve is smooth.
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Lemma 12.5. The intersection X ∩ H is singular at P if and only if H = TPX. (Re-
member that X is smooth, and then the tangent plane is well-defined. Also, this theorem
is true for arbitrary fields.)

Proof. Assume that X ∩H is singular at a point P . We can choose coordinates so that
P = (0 : 0 : 0 : 1) and H is given by x0 = 0. Then, the equation of X ∩H is

f(0, x1, x2, x3) = 0 (in H).

Since P is singular, we have

∂f

∂x1

(0 : 0 : 0 : 1) =
∂f

∂x2

(0 : 0 : 0 : 1) =
∂f

∂x3

(0 : 0 : 0 : 1) = 0 .

Then, TPX is given by
∂f

∂x0

(0 : 0 : 0 : 1)x0 = 0 ,

or x0 = 0, since ∂f
∂x0

(0 : 0 : 0 : 1) is non-zero by hypothesis, and thus TPX = H.
Conversely, assume that H = TPX for some P . Change the coordinates such that

P = (0 : 0 : 0 : 1) and H = TPX is given by x0 = 0. This implies that

∂f

∂x1

(0 : 0 : 0 : 1) =
∂f

∂x2

(0 : 0 : 0 : 1) =
∂f

∂x3

(0 : 0 : 0 : 1) = 0 ,

which implies that f(0, x1, x2, x3) = 0 (i.e., X ∩H) is singular at P .

Remember that the set of all planes in P3 is the dual (P3)∗ ∼= P
3. We have then the

map φ : X → (P3)∗ defined by

φ(P ) = TPX =

(
∂f

∂x0

(P ) :
∂f

∂x1

(P ) :
∂f

∂x2

(P ) :
∂f

∂x3

(P )

)
.

Define X∗ ≡ φ(X) and d∗ ≡ degX∗. Since X∗ is the image of X under φ, we have
dimX∗ ≤ dimX = 2.

If L ⊂ P3 is a line, the set

{H ⊃ L : H is a plane}
is a line, say L∗ ⊂ (P3)∗. (As we have mentioned before, the planes through a line forms
a line. For instance, if L is x0 = x1 = 0 in P3, then L∗ is given by x2 = x3 = 0 in (P3)∗.)

We will now see that the non-smooth planes H ⊃ L correspond to L∗ ∩X∗. We need
to pick an L such that L 6⊂ X. We will prove this later.

So, if we pick L such that L∗ 6⊂ X∗ (we will also prove that we can pick such L later),
then by Bezout’s theorem #X∗ ∩ L∗ ≤ d∗, and these are the non-smooth planes. Then,

#X(Fq) =
∑
H⊃L

H over Fq

#(X ∩H)(Fq)− q#(X ∩ L)(Fq) =

∑
H∩X

smooth

#(X ∩H)(Fq) +
∑
H∩X

non-sm.

#(X ∩H)(Fq)− q#(X ∩ L)(Fq).
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If X ∩ H is a smooth plane curve, then we sketched the proof that the genus of this
curve is (d− 1)(d− 2)/2, and so, by the Riemann Hypothesis,

q + 1− (d− 1)(d− 2)q1/2 ≤ #X ∩H(Fq) ≤ q + 1 + (d− 1)(d− 2)q1/2 .

If X ∩H is not smooth, X ∩H is still a plane curve of degree d, and we have the trivial
bounds

0 ≤ #X ∩H(Fq) ≤ d(q + 1).

Also, by Bezout’s theorem,

0 ≤ #X ∩ L(Fq) ≤ #X ∩ L ≤ d

(since L 6⊂ X).
Hence

#X(Fq) ≤ (q + 1)(q + 1 + (d− 1)(d− 2)q1/2) + d∗d(q + 1)− 0

≤ q2 + (2(d− 1)(d− 2) + (d d∗ + 2) + d d∗ + 1)q3/2

and

#X(Fq) ≥ (q + 1− d∗)(q + 1− (d− 1)(d− 2)q1/2)− dq .

13. Week Thirteen

We are proving the Lang-Weil estimate for smooth surfaces X in P3. We assume
that X is defined over Fq, and that X is given by the homogeneous polynomial f ∈
Fq[x0, x1, x2, x3]. We also have a map

φ : X → (P3)∗

given by

P 7→ TPX =
( ∂f
∂x0

(P ) :
∂f

∂x1

(P ) :
∂f

∂x2

(P ) :
∂f

∂x3

(P )
)
,

where TPX is the tangent plane to X at the point P . We let X∗ = φ(X). The statement
of the theorem is the following:

Theorem 13.1 (Lang-Weil). There exist constants C1(d), C2(d) depending only on the
degree d such that

|#X(Fq)− q2| ≤ C1(d)q3/2 + C2(d) .

Earlier in the semester we proved that we can replace the right hand side with the
bound 3dq2 + 2dq + 1. If the constant C2 is on the order of d6, then the Lang-Weil is
worse than the bound we proved earlier; thus we only consider small degrees d.

To finish our proof, we needed to establish three things. We needed a bound on d∗ =
deg(X∗), we needed the existence of a line L in P3 defined over Fq such that L * X, and
we needed this line to also have the property that L∗ * X∗.

Lemma 13.2. If d is the degree of X as above, then d∗ ≤ d(d− 1)2.
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Proof. We work over an algebraically closed field for this result. If we drop the hypothesis
that the line L to be chosen be defined over Fq, then it is easy to find a line not contained
in X — pick a point not on the surface and draw any line through it. The same can also
be done in (P3)∗. Take a line L1 (defined over Fq) such that L1 * X∗. For a generic such
line, we know that

d∗ = #X∗ ∩ L1 .

Changing coordinates, we may assume that L1 is given by x2 = x3 = 0. Now count the
points P ∈ X such that TPX ⊃ L∗1. It is easy to see that TPX ⊃ L∗1 is equivalent to the
conditions that f(P ) = 0 and ∂f

∂x2
(P ) = 0 = ∂f

∂x3
(P ). By Bezout, these three conditions

give that d∗ ≤ d(d− 1)2.

To show that we can find a line meeting the other conditions, we proceed as follows.
First, we will find a plane H/Fq with H∗ not an element of X∗, i.e., such that H is not
tangent to X. Then we will find a point P ∈ H(Fq) with P /∈ X ∩H. Then any line L
contained in H which contains P will suffice. Since H ⊃ L and H is a plane, we know
that H∗ ∈ L∗; since H∗ /∈ X∗, we know that L∗ * X∗.

To prove that such an H∗ exists, it is enough to show that #X∗(Fq) < #(P3)∗ since
we only need a plane not tangent to X, i.e., a point in (P3)∗ not on X∗. Using our old
bound for the number of points on a surface, we get that

#X∗(Fq) ≤ 3d∗q2 + 2d∗q + 1 ≤ 6d3q2 .

We also know that

#(P3)∗ = q3 + q2 + q + 1 > q3 .

Thus if q > 6d3, we can find such an H∗.
To find the point P , we must show that #X ∩H(Fq) < #H(Fq). We know that

#X ∩H(Fq) ≤ d(q + 1),

and also that

#H(Fq) = q2 + q + 1 > q2 .

Thus the desired point P exists if q > d + 1. This finishes the proof of Lang-Weil in the
case of smooth surfaces in P3. Note, however, that this argument was quite wasteful and
produced bad constants C1(d), C2(d).

For this result, we looked at #X ∩H with X ∩H smooth for most planes H, but we
only need to worry about those intersections which are not absolutely irreducible. But
sometimes being reducible can actually help get a better bound. Assume there is a line
L ⊂ X. Then X ∩H ⊃ L if H ⊃ L. But we know about L, and X ∩H = L ∪ CH where
CH is a curve of degree d− 1. This leads to the following result.

Theorem 13.3. Let X be a smooth surface of degree 3 in P3. Then there exists a constant
c > 0 such that

|#X(Fq)− q2| ≤ cq .

62



Proof. We will use the fact that every cubic over an algebraically closed field contains
27 lines. Strictly speaking, we need the line to be defined over Fq; by going to a finite
extension and using properties of the zeta function, we can deduce the general case. Since
d = 3, the curves CH have degree 2, so they are conics in the plane H. They are either
smooth or the union of 2 lines. The latter happens at most 13 times since in that case
L ⊂ X would be one of 27 lines and then the other pairs of lines would also lie on X. We
know that smooth conics have q+ 1 rational points, so in this case #CH(Fq) = q+ 1. We
also know that

0 ≤ #CH ∩ L(Fq) ≤ 2 .

This gives

#X(Fq) = #L(Fq) +
∑
H⊃L

#(CH \ L)(Fq) ,

where we can split this last sum into the sum over planes H which intersect in a smooth
conic and planes H that intersect in two lines. We know that #L(Fq) = q + 1, and also
that the total number of points on CH \L for H intersecting X in two lines is on the order
of q since this happens at most 13 times for between 2q and 2q + 2 points each time. If
H intersects X in a smooth conic, then the sum∑

H good

#(CH \ L)(Fq)

simplifies to the number of “good” planes times q plus something on the order of a
constant. The number of “good” planes is between q − 12 and q + 1, so is itself of the
form q +O(1); this gives that the total sum is of the form q2 +O(q).
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