Unexpected algebraic and geometric properties of Fermat-type configurations

Tomasz Szemberg

Pedagogical University of Cracow Department of Mathematics

2018 CMS Winter Meeting

Vancouver, December 7-10, 2018

http://szemberg.up.krakow.pl/Vancouver2018.pdf

Problem (Containment problem)

Determine positive integers m, r such that

$$I^{(m)} \subset I^r$$
 (1)

for all homogenous ideals $I \subset \mathbb{K}[x_0, \ldots, x_N]$.

Problem (Containment problem)

Determine positive integers m, r such that

$$I^{(m)} \subset I^r$$
 (1)

for all homogenous ideals $I \subset \mathbb{K}[x_0, \ldots, x_N]$.

Theorem (Ein-Lazarsfeld-Smith, Hochster-Huneke)

The containment in (1) holds whenever $m \ge Nr$.

Problem (Containment problem)

Determine positive integers m, r such that

$$I^{(m)} \subset I^r$$
 (1)

for all homogenous ideals $I \subset \mathbb{K}[x_0, \ldots, x_N]$.

Theorem (Ein-Lazarsfeld-Smith, Hochster-Huneke)

The containment in (1) holds whenever $m \ge Nr$.

Problem

To what extend can the bound Nr in the Theorem be lowered?

A Fermat (Ceva) arrangement of lines is given by linear factors of the polynomial $% \left({{\rm{Ceva}}} \right) = {{\rm{Ceva}}} \right)$

$$(x^n-y^n)(y^n-z^n)(z^n-x^n).$$

4 E b

A Fermat (Ceva) arrangement of lines is given by linear factors of the polynomial $% \left({{\rm{Ceva}}} \right) = {{\rm{Ceva}}} \right)$

$$(xn - yn)(yn - zn)(zn - xn).$$

Remark

For n = 3 we obtain the dual Hesse arrangement.

A Fermat (Ceva) arrangement of lines is given by linear factors of the polynomial

$$(xn - yn)(yn - zn)(zn - xn).$$

Remark

For n = 3 we obtain the dual Hesse arrangement.

Theorem (Dumnicki-Szemberg-Tutaj-Gasińska, Seceleanu)

For $n \ge 3$ the ideal of intersection points of lines in the Fermat arrangement provides a non-containment example for

$$I^{(3)} \subset I^2$$
.

Theorem (Ein-Lazarsfeld-Smith, Hochster-Huneke)

The containment $I^{(m)} \subset I^r$ holds whenever $m \ge r$ bigheight(I).

(B)

Theorem (Ein-Lazarsfeld-Smith, Hochster-Huneke)

The containment $I^{(m)} \subset I^r$ holds whenever $m \ge r$ bigheight(I).

Definition

A Fermat-type hyperplane arrangement \mathcal{F}_N^n in \mathbb{P}^N is the arrangement determined by linear factors of the polynomial

$$F_{N,n} = \prod_{0 \leqslant i < j \leqslant N} (x_i^n - x_j^n).$$

Theorem (Ein-Lazarsfeld-Smith, Hochster-Huneke)

The containment $I^{(m)} \subset I^r$ holds whenever $m \ge r$ bigheight(I).

Definition

A Fermat-type hyperplane arrangement \mathcal{F}_N^n in \mathbb{P}^N is the arrangement determined by linear factors of the polynomial

$$F_{N,n} = \prod_{0 \leqslant i < j \leqslant N} (x_i^n - x_j^n).$$

Theorem (Malara-Szpond)

Let I be the ideal of codimension 2 flats determined by intersecting at least 3 hyperplanes in \mathcal{F}_N^n with $N \ge 2$ and $n \ge 3$. Then the containment

$$I^{(3)} \subset I^2$$
 fails.

We say that a reduced set of points $Z \subset \mathbb{P}^N$ admits an unexpected hypersurface of degree d if there exists a sequence of integers m_1, \ldots, m_s such that for general points P_1, \ldots, P_s the zero-dimensional subscheme $m_1P_1 + \ldots + m_sP_s$ fails to impose independent conditions on forms of degree d vanishing along Z.

We say that a reduced set of points $Z \subset \mathbb{P}^N$ admits an unexpected hypersurface of degree d if there exists a sequence of integers m_1, \ldots, m_s such that for general points P_1, \ldots, P_s the zero-dimensional subscheme $m_1P_1 + \ldots + m_sP_s$ fails to impose independent conditions on forms of degree d vanishing along Z.

Theorem (Cook II, Harbourne, Migliore, Nagel)

If $n \ge 5$, the dual set of points of \mathcal{F}_2^n admits an unexpected curve of degree n + 2 with $m_1 = n + 1$. Moreover, this curve is unique and irreducible.

We say that a reduced set of points $Z \subset \mathbb{P}^N$ admits an unexpected hypersurface of degree d if there exists a sequence of integers m_1, \ldots, m_s such that for general points P_1, \ldots, P_s the zero-dimensional subscheme $m_1P_1 + \ldots + m_sP_s$ fails to impose independent conditions on forms of degree d vanishing along Z.

Theorem (Cook II, Harbourne, Migliore, Nagel)

If $n \ge 5$, the dual set of points of \mathcal{F}_2^n admits an unexpected curve of degree n + 2 with $m_1 = n + 1$. Moreover, this curve is unique and irreducible.

Theorem (Sz., Szpond)

If $n \ge 5$, the set of points determined by \mathcal{F}_2^n admits an unexpected curve of degree n + 2 with $m_1 = 4$. Moreover, this curve is unique and irreducible.

< 🗇 > < 🖃 > <

Fermat-type configuration of points

Definition

A Fermat-type configuration W_N^n of points in \mathbb{P}^N of degree *n* consists of

• complete intersection points determined by

$$(x_0^n - x_1^n, \ldots, x_{N-1}^n - x_N^n);$$

• all coordinate points.

Fermat-type configuration of points

Definition

A Fermat-type configuration W_N^n of points in \mathbb{P}^N of degree *n* consists of

• complete intersection points determined by

$$(x_0^n - x_1^n, \ldots, x_{N-1}^n - x_N^n);$$

all coordinate points.

Lemma

The ideal of W_N^n is generated by all forms of the type

$$x_i(x_j^n-x_k^n),$$

where $i, j, k \in \{0, \dots, N\}$ are mutually distinct.

Fermat-type configuration of points in \mathbb{P}^3

We study the ideal I generated by the following 8 binomials of degree 4:

$$x(y^3 - z^3), x(z^3 - w^3), y(x^3 - z^3), y(z^3 - w^3),$$

 $z(x^3 - y^3), z(y^3 - w^3), w(x^3 - y^3), w(y^3 - z^3).$

Fermat-type configuration of points in \mathbb{P}^3

We study the ideal I generated by the following 8 binomials of degree 4:

$$x(y^3 - z^3), x(z^3 - w^3), y(x^3 - z^3), y(z^3 - w^3),$$

 $z(x^3 - v^3), z(y^3 - w^3), w(x^3 - y^3), w(y^3 - z^3)$

This is the ideal of $27 = 3^3$ (complete intersection) points of the form

$$P_{(\alpha,\beta,\gamma)} = (1:\varepsilon^{lpha}:\varepsilon^{eta}:\varepsilon^{\gamma})$$

where ε is a primitive root of unity of order 3 and $1 \le \alpha, \beta, \gamma \le 3$; and the 4 coordinate points. We denote the set of all these 31 points by W_3^3 .

Fermat-type configuration of points in \mathbb{P}^3

We study the ideal I generated by the following 8 binomials of degree 4:

$$x(y^3 - z^3), x(z^3 - w^3), y(x^3 - z^3), y(z^3 - w^3),$$

 $z(x^3 - y^3), z(y^3 - w^3), w(x^3 - y^3), w(y^3 - z^3).$

This is the ideal of $27 = 3^3$ (complete intersection) points of the form

$$P_{(\alpha,\beta,\gamma)} = (1:\varepsilon^{lpha}:\varepsilon^{eta}:\varepsilon^{\gamma})$$

where ε is a primitive root of unity of order 3 and $1 \le \alpha, \beta, \gamma \le 3$; and the 4 coordinate points. We denote the set of all these 31 points by W_3^3 .

This is a proper subset of points determined by the arrangement \mathcal{F}_3^3 .

Theorem (Bauer, Malara, Sz., Szpond)

Let P = (a : b : c : d) be a generic point in \mathbb{P}^3 . Then the quartic

$$Q_{R}(x:y:z:w) = b^{2}(c^{3}-d^{3}) \cdot x^{3}y + a^{2}(d^{3}-c^{3}) \cdot xy^{3}$$

+ $c^{2}(d^{3}-b^{3}) \cdot x^{3}z + c^{2}(a^{3}-d^{3}) \cdot y^{3}z$
+ $a^{2}(b^{3}-d^{3}) \cdot xz^{3} + b^{2}(d^{3}-a^{3}) \cdot yz^{3}$
+ $d^{2}(b^{3}-c^{3}) \cdot x^{3}w + d^{2}(c^{3}-a^{3}) \cdot y^{3}w$
+ $d^{2}(a^{3}-b^{3}) \cdot z^{3}w + a^{2}(c^{3}-b^{3}) \cdot xw^{3}$
+ $b^{2}(a^{3}-c^{3}) \cdot yw^{3} + c^{2}(b^{3}-a^{3}) \cdot zw^{3}$

- vanishes at all points of W_3^3 ,
- vanishes to order 3 at P,
- is an unexpected surface for W_3^3 with $m_1 = 3$.

Theorem (Szpond, on arXiv on Tuesday)

Let N = 2k + 1 be an odd number. Let W_N^3 be the Fermat-type configuration of points.

Let R and P_1, \ldots, P_{k-1} be generic points in \mathbb{P}^N . Then there exists a **unique** quartic hypersurface

- vanishing at all points of W_N^3 ,
- vanishing to order 3 at R,
- vanishing to order 2 at P_1, \ldots, P_{k-1} ,
- unexpected for W_N^3 with $m_1 = 3$ and $m_2 = \ldots = m_{k-1} = 2$.

Theorem (Szpond)

Let $P = (b_0 : b_1 : ... : b_5)$ be a general point in \mathbb{P}^5 . Then there exists a unique quartic $Q_{R,P}$ vanishing at

- all Fermat points W₅³,
- point $R = (a_0 : a_1 : ... : a_5)$ to order 3,
- point P to order 2.

Example continued

$$Q_{R,P}(\mathbf{a},\mathbf{b},\mathbf{x}) = \sum_{i=0}^{5} \sum_{j=i+2}^{i+5} h_{i,j}(\mathbf{a},\mathbf{b}) \cdot x_i(x_{i+1}^3 - x_j^3).$$

向下 イヨト イヨト

э

Example continued

$$Q_{R,P}(\mathbf{a}, \mathbf{b}, \mathbf{x}) = \sum_{i=0}^{5} \sum_{j=i+2}^{i+5} h_{i,j}(\mathbf{a}, \mathbf{b}) \cdot x_i(x_{i+1}^3 - x_j^3).$$

$$h_{i,j} = (-1)^j \cdot Q_R(b_{\alpha_{i,j}[1]}, b_{\alpha_{i,j}[2]}, b_{\alpha_{i,j}[3]}, b_{\alpha_{i,j}[4]})a_i^2,$$

where

- Q_R is the unexpected quartic in \mathbb{P}^3 ;
- $\alpha_{i,j} = \sigma_j(i+1, i+2, i+3, i+4, i+5);$
- σ_j removes the entry "j" from a sequence.

Theorem

(Dumnicki-Harbourne-Nagel-Seceleanu-Szemberg-Tutaj-Gasińska)

For the Fermat configuration W_2^n we have

- the resurgence $\rho(I_{2,n}) = \frac{3}{2}$;
- the asymptotic resurgence $\hat{\rho}(I_{2,n}) = \frac{n+1}{n}$;
- the Waldschmidt constant $\widehat{\alpha}(I_{2,n}) = n$.

Theorem

(Dumnicki-Harbourne-Nagel-Seceleanu-Szemberg-Tutaj-Gasińska)

For the Fermat configuration W_2^n we have

- the resurgence $\rho(I_{2,n}) = \frac{3}{2}$;
- the asymptotic resurgence $\widehat{\rho}(I_{2,n}) = \frac{n+1}{n}$;
- the Waldschmidt constant $\widehat{\alpha}(I_{2,n}) = n$.

Work in progress: Farnik, Guardo, Malara, Szpond, Tutaj-Gasińska

For the Fermat configuration W_N^n with $N \ge 3$ we have

- the resurgence $\rho(I_{N,n}) = \frac{4}{3}$;
- the asymptotic resurgence $\widehat{\rho}(I_{2,n}) = ?;$
- the Waldschmidt constant $\widehat{\alpha}(I_{2,n}) = n$.

▲ 同 ▶ → ● ▶

문 문 문