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Hilbert Function and Hilbert Polynomial

Definition

Let I ⊂ R be a homogeneous ideal in a polynomial ring
R = K[x0, . . . , xN ]. The Hilbert function of I is

HFR/I (d) = dim(R/I )d .

Remark

It is well-known that the Hilbert function becomes polynomial, i.e., there
is a polynomial HPR/I (d) such that

HFR/I (d) = HPR/I (d) for d � 0.
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Notation in a geometric situation

Remark

Ideals motivated geometrically are of particular interest.

If I is a saturated ideal defining a subscheme V ⊂ PN(K), then we write

HFV (d) = HFR/I (d)

and
HPV (d) = HPR/I (d).
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A Big (Data) Problem

Remark

Hilbert polynomials can be computed algorithmically, symbolic algebra
programs can handle this. Hilbert functions are much harder to compute.

Problem

Determine Hilbert functions of subschemes in PN(K).

Remark

This problem is much too hard in this generality and beyond reach.

The simplest Hilbert functions occur for subvarieties which impose
independent (or predictable) conditions on forms of arbitrary degree.
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Bipolynomial Hilbert Function

Definition (Carlini, Catalisano, Geramita)

We say that a subscheme V ⊂ PN(K) has a bipolynomial Hilbert
function if

HFV (d) = min {HPPN (d), HPV (d)}

for all d .

Remark

There is

HPPN (d) =

(
N + d

d

)
for all d.
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Examples

Example

Let V be a finite union of s general points in a projective space PN(K).
Then V has a bipolynomial Hilbert function.

More precisely we have for all d

HFV (d) = min

{(
N + d

d

)
, s

}
.

Theorem (Hartshorne-Hirschowitz 1982)

Let V be a union of s general lines in the projective space PN(K), with
N ≥ 3. Then the Hilbert function of V is bipolynomial.

More precisely we have for all d

HFV (d) = min

{(
N + d

d

)
, s(d + 1)

}
.
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Passing from points to fat points, step m = 2

Theorem (Alexander-Hirschowitz 1995)

Let V be a general collection of s double points in PN(K) (over an
algebraically closed field of characteristic zero). Then

HFV (d) = min

{(
N + d

d

)
, s(N + 1)

}
except in the following cases
• d = 2, 2 ≤ s ≤ N;

• N = 2, d = 4, s = 5;
• N = 3, d = 4, s = 9;
• N = 4, d = 4, s = 14;

• N = 4, d = 3, s = 7.

Remark

The authors worked on this problem for over 10 years.
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Alexander-Hirschowitz Theorem revisited

The proof of Alexander and Hirschowitz is rather involved. It has been
simplified by several authors including:

Karen Chandler (Trans. Amer. Math. Soc. 353 (2001) and
Compositio Math. 134 (2002));

Maria Brambilla and Giorgio Ottaviani (J. Pure Appl. Algebra 212
(2008));

Elisa Postinghel (Ann. Mat. Pura Appl. (4) 191 (2012)).

Remark

All proofs are based on some degeneration, i.e., if the claim holds for
points in special position, then it holds for points in general position
(provided both positions belong to a flat family).

Tomasz Szemberg Postulation in projective spaces and unexpected hypersurfaces



Alexander-Hirschowitz Theorem revisited

The proof of Alexander and Hirschowitz is rather involved. It has been
simplified by several authors including:

Karen Chandler (Trans. Amer. Math. Soc. 353 (2001) and
Compositio Math. 134 (2002));

Maria Brambilla and Giorgio Ottaviani (J. Pure Appl. Algebra 212
(2008));

Elisa Postinghel (Ann. Mat. Pura Appl. (4) 191 (2012)).

Remark

All proofs are based on some degeneration, i.e., if the claim holds for
points in special position, then it holds for points in general position
(provided both positions belong to a flat family).

Tomasz Szemberg Postulation in projective spaces and unexpected hypersurfaces



Alexander-Hirschowitz Theorem revisited

The proof of Alexander and Hirschowitz is rather involved. It has been
simplified by several authors including:

Karen Chandler (Trans. Amer. Math. Soc. 353 (2001) and
Compositio Math. 134 (2002));

Maria Brambilla and Giorgio Ottaviani (J. Pure Appl. Algebra 212
(2008));

Elisa Postinghel (Ann. Mat. Pura Appl. (4) 191 (2012)).

Remark

All proofs are based on some degeneration, i.e., if the claim holds for
points in special position, then it holds for points in general position
(provided both positions belong to a flat family).

Tomasz Szemberg Postulation in projective spaces and unexpected hypersurfaces



Alexander-Hirschowitz Theorem revisited

The proof of Alexander and Hirschowitz is rather involved. It has been
simplified by several authors including:

Karen Chandler (Trans. Amer. Math. Soc. 353 (2001) and
Compositio Math. 134 (2002));

Maria Brambilla and Giorgio Ottaviani (J. Pure Appl. Algebra 212
(2008));

Elisa Postinghel (Ann. Mat. Pura Appl. (4) 191 (2012)).

Remark

All proofs are based on some degeneration, i.e., if the claim holds for
points in special position, then it holds for points in general position
(provided both positions belong to a flat family).

Tomasz Szemberg Postulation in projective spaces and unexpected hypersurfaces



Passing from points to fat points, small values of m

Several authors studied general points with higher multiplicity only in P2.

Here is a sample from a long list.

Ciro Ciliberto and Rick Miranda: equal multiplicities m ≤ 12 (Trans.
Amer. Math. Soc. 352 (2000));

Stephanie Yang: mixed multiplicities ≤ 7 (J. Algebraic Geom. 16
(2007));

Marcin Dumnicki and Witold Jarnicki: equal multiplicities ≤ 42 (J.
Symbolic Comput. 42 (2007));

Remark

Ciliberto and Miranda introduced a degeneration of the ambient space
(replace P2 by some other scheme) combined with the degeneration of
points.

Tomasz Szemberg Postulation in projective spaces and unexpected hypersurfaces



Passing from points to fat points, small values of m

Several authors studied general points with higher multiplicity only in P2.
Here is a sample from a long list.

Ciro Ciliberto and Rick Miranda: equal multiplicities m ≤ 12 (Trans.
Amer. Math. Soc. 352 (2000));

Stephanie Yang: mixed multiplicities ≤ 7 (J. Algebraic Geom. 16
(2007));

Marcin Dumnicki and Witold Jarnicki: equal multiplicities ≤ 42 (J.
Symbolic Comput. 42 (2007));

Remark

Ciliberto and Miranda introduced a degeneration of the ambient space
(replace P2 by some other scheme) combined with the degeneration of
points.

Tomasz Szemberg Postulation in projective spaces and unexpected hypersurfaces



Passing from points to fat points, small values of m

Several authors studied general points with higher multiplicity only in P2.
Here is a sample from a long list.

Ciro Ciliberto and Rick Miranda: equal multiplicities m ≤ 12 (Trans.
Amer. Math. Soc. 352 (2000));

Stephanie Yang: mixed multiplicities ≤ 7 (J. Algebraic Geom. 16
(2007));

Marcin Dumnicki and Witold Jarnicki: equal multiplicities ≤ 42 (J.
Symbolic Comput. 42 (2007));

Remark

Ciliberto and Miranda introduced a degeneration of the ambient space
(replace P2 by some other scheme) combined with the degeneration of
points.

Tomasz Szemberg Postulation in projective spaces and unexpected hypersurfaces



Passing from points to fat points, small values of m

Several authors studied general points with higher multiplicity only in P2.
Here is a sample from a long list.

Ciro Ciliberto and Rick Miranda: equal multiplicities m ≤ 12 (Trans.
Amer. Math. Soc. 352 (2000));

Stephanie Yang: mixed multiplicities ≤ 7 (J. Algebraic Geom. 16
(2007));

Marcin Dumnicki and Witold Jarnicki: equal multiplicities ≤ 42 (J.
Symbolic Comput. 42 (2007));

Remark

Ciliberto and Miranda introduced a degeneration of the ambient space
(replace P2 by some other scheme) combined with the degeneration of
points.

Tomasz Szemberg Postulation in projective spaces and unexpected hypersurfaces



Passing from points to fat points, small values of m

Several authors studied general points with higher multiplicity only in P2.
Here is a sample from a long list.

Ciro Ciliberto and Rick Miranda: equal multiplicities m ≤ 12 (Trans.
Amer. Math. Soc. 352 (2000));

Stephanie Yang: mixed multiplicities ≤ 7 (J. Algebraic Geom. 16
(2007));

Marcin Dumnicki and Witold Jarnicki: equal multiplicities ≤ 42 (J.
Symbolic Comput. 42 (2007));

Remark

Ciliberto and Miranda introduced a degeneration of the ambient space
(replace P2 by some other scheme) combined with the degeneration of
points.

Tomasz Szemberg Postulation in projective spaces and unexpected hypersurfaces



Passing from points to fat points, arbitrary m

Conjecture (SHGH, Segre-Harbourne-Gimigliano-Hirschowitz)

Let V be a collection of s general points of multiplicity m in P2(K).
Then either

HFV (d) = min

{(
d + 2

2

)
, s

(
m + 1

2

) }
or the linear system

|OP2(d)⊗ I(m)
V |

contains a fat (−1)-curve in its base locus.
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Even less is known

Conjecture (Nagata 1959)

Let V be a collection of s ≥ 10 general points of multiplicity m in P2(K).
Then the initial degree d of I (V ) satisfies

d > m
√
s.

Remark

This is well-known if s is a perfect square and open otherwise.
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New path of research

Cook II, Harbourne, Migliore and Nagel brought up in their Compositio
2018 article a new idea to study the postulation problem for linear
subspaces of the vector space of all homogeneous polynomials of fixed
degree and discovered surprising new phenomena.

Definition

We say that a set Z of reduced points (not necessarily general) in Pn

admits an unexpected hypersurface of degree d with a general point P
of multiplicity m, if

h0(OPn(d)⊗ IZ ⊗ ImP ) > max

{
0, h0(OPn(d)⊗ IZ )−

(
n − 1 + m

n

)}
.

Remark

The empty set does not admit any unexpected hypersurfaces.
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The first example

Example

In the article
Di Gennaro, R., Ilardi, G., Vallés, J.: Singular hypersurfaces characterizing
the Lefschetz properties. Lond. Math. Soc. 89 (2014) 194–212

the authors observed in passing that

there exists a set Z of 9 points in P2 (coming from the B3 root system)
which admits an unexpected (irreducible) curve of degree 4 (passing
through Z ) with a general point P of multiplicity 3.
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A visualization of the dual B3 line arrangement

xyz(x2 − y2)(y2 − z2)(z2 − x2)
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Visualization of the unexpected quartic admitted for B3

P
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Equation of the unexpected quartic for B3

Example (Bauer, Malara, Sz., Szpond, Manuscripta 2019)

Let Z be the set of points with coordinates

P1 = (1 : 0 : 0), P2 = (0 : 1 : 0), P3 = (0 : 0 : 1),
P4 = (1 : 1 : 0), P5 = (1 : −1 : 0), P6 = (1 : 0 : 1),
P7 = (1 : 0 : −1), P8 = (0 : 1 : 1), P9 = (0 : 1 : −1).

and let P = (a : b : c) be a general point. Then

QP(x : y : z) = 3a(b2 − c2) · x2yz + 3b(c2 − a2) · xy2z
+3c(a2 − b2) · xyz2
+a3 · y3z − a3 · yz3 + b3 · xz3
−b3 · x3z + c3 · x3y − c3 · xy3

vanishes at all points of Z and has a triple point at P.
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Unexpected duality

Example (Bauer, Malara, Sz., Szpond, Manuscripta 2019)

For a generic choice of the point S = (x : y : z) the cubic (in variables
a, b, c)

QS(a : b : c) = yz(y2 − z2) · a3 + xz(z2 − x2) · b3
+xy(x2 − y2) · c3 + 3x2yz · ab2
−3xy2z · a2b + 3xyz2 · a2c − 3x2yz · ac2
+3xy2z · bc2 − 3xyz2 · b2c

has a triple point in S .

Hence it splits into three lines.
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Uniqueness of the B3 related quartic

Theorem (Farnik, Galuppi, Sodomaco, Trok, arXiv:1804.03590)

Up to projective equivalence, the configuration of points B3 is the only
one which admits an unexpected curve of degree 4.

There is no unexpected curve of degree d ≤ 3 (this reproves a result from
S. Akesseh thesis, Lincoln 2017).
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Fundamental question

Question

For which d and m are there unexpected hypersurfaces?

Theorem (Harbourne, Migliore, Nagel, Teitler)

Denote by d the degree of an unexpected hypersurface of some finite set
of points Z ⊂ Pn and by m its multiplicity at a general point P in Pn.

(i) If n = 2 then there exists some set Z admitting such an unexpected
curve if and only if (d ,m) satisfies d > m > 2.

(ii) If n > 3 then there exists a set Z admitting such an unexpected
hypersurface if and only if (d ,m) satisfies d ≥ m ≥ 2.

Remark

The construction given by HMNT is explicit and solves the geography
problem but we are far from understanding all ways the unexpected
hypersurfaces come up.
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Fermat-type arrangements

Definition

A Fermat-type hyperplane arrangement Fn
N in PN is the arrangement

determined by linear factors of the polynomial

FN,n =
∏

0≤i<j≤N

(xni − xnj ).

Remark

For N = 2 we obtain Fermat (Ceva) arrangements of lines defined by the
equation

(xn − yn)(yn − zn)(zn − xn) = 0.
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A Fermat-type configuration of points in P3

We study the ideal I generated by the following 8 binomials of degree 4:

x(y3 − z3), x(z3 − w3), y(x3 − z3), y(z3 − w3) ,

z(x3 − y3), z(y3 − w3), w(x3 − y3), w(y3 − z3) .

This is the ideal of 27 = 33 (complete intersection) points of the form

P(α,β,γ) = (1 : εα : εβ : εγ)

where ε is a primitive root of unity of order 3 and 1 6 α, β, γ 6 3; and
the 4 coordinate points. We denote the set of all these 31 points by W .

This is a subset of points determined by the arrangement F3
3 .
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An unexpected surface in P3

Theorem (Bauer, Malara, Sz., Szpond)

Let P = (a : b : c : d) be a generic point in P3. Then the quartic

QR(x : y : z : w) = b2(c3 − d3) · x3y + a2(d3 − c3) · xy3

+c2(d3 − b3) · x3z + c2(a3 − d3) · y3z
+a2(b3 − d3) · xz3 + b2(d3 − a3) · yz3
+d2(b3 − c3) · x3w + d2(c3 − a3) · y3w
+d2(a3 − b3) · z3w + a2(c3 − b3) · xw3

+b2(a3 − c3) · yw3 + c2(b3 − a3) · zw3

vanishes at all points of W ,

vanishes to order 3 at P,

is an unexpected surface for W .
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Higher dimensional projective spaces and more fat points

Question

Can there be an unexpected hypersurface with more than one general fat
point?

Theorem (Szpond, arXiv:1812.04032)

Let N = 2k + 1 be an odd number. Let WN be the union of coordinate
points in PN and the Fermat-type configuration of points

(1 : εα1 : εα2 : . . . : εαN ),

where ε is a primitive root of 1 of order 3 and α1, . . . , αN = 1, 2, 3.
Let R and P1, . . . ,Pk−1 be generic points in PN . Then there exists a
unique quartic hypersurface

vanishing at all points of WN ,

vanishing to order 3 at R,

vanishing to order 2 at P1, . . . ,Pk−1,

unexpected for WN .
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Back to the root

Example (Harbourne, Migliore, Nagel, Teitler)

The root system Bn+1 ⊂ Cn+1 consists of the 2(n + 1)2 integer vectors
(a1, . . . , an+1) such that

1 ≤ a21 + · · ·+ a2n+1 ≤ 2.

Thus there is |ZBn+1 | = (n + 1)2 for the corresponding set of points
ZBn+1 ⊂ Pn.
These root systems give always rise to unexpected hypersurfaces of
degree 4 with a point of multiplicity 4 and sometimes to hypersurfaces
with different invariants too.

Remark

The above claim is, so far, based on computer experiments.
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Yet another root system and branch of research

Example (Harbourne, Migliore, Nagel, Teitler)

Let Z ⊂ P3 be defined by the F4 root system:

(1 : 0 : 0 : 0), (0 : 1 : 0 : 0), (0 : 0 : 1 : 0), (0 : 0 : 0 : 1),

(1 : 1 : 0 : 0), (1 : 0 : 1 : 0), (1 : 0 : 0 : 1), (0 : 1 : 1 : 0),

(0 : 1 : 0 : 1), (0 : 0 : 1 : 1), (1 : −1 : 0 : 0), (1 : 0 : −1 : 0),

(1 : 0 : 0 : −1), (0 : 1 : −1 : 0), (0 : 1 : 0 : −1), (0 : 0 : 1 : −1),

(1 : 1 : 1 : 1), (1 : 1 : 1 : −1), (1 : 1 : −1 : 1), (1 : −1 : 1 : 1),

(1 : 1 : −1 : −1), (1 : −1 : 1 : −1), (1 : −1 : −1 : 1), (1 : −1 : −1 : −1).

Then Z admits an unexpected surface of degree 4 and a general point R
of multiplicity 4.

Proposition (Chiantini, Migliore)

Projecting Z from R, one gets a complete intersection.
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Conclusion

We have no idea where else, in which form and with what additional
properties unexpected hypersurfaces might pop up.

But we expect that this is just a beginning of a long research path.

T H A N K Y O U !
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