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Foreword

The PRAGMATIC research school began in 1997 with its first edition. Since the
last 20 years, many of the most important researchers in the field of Algebraic
Geometry and Commutative Algebra have succeeded as main teachers of this project
and have made this school a real success among young researchers (see the website
of PRAGMATIC: www.dmi.unict.it/pragmatic/docs/Pragmatic-main.html).

In addition, the almost 400 young researchers who participated in the various
editions of PRAGMATIC have in turn contributed to the success of this activity with
over one hundred publications in the most important scientific journals (a partial
list of such works can be found at www.dmi.unict.it/~pragmatic/docs/Pragmatic-
papers.html). In thanking, on behalf of the organizers, all those who contributed to
the enormous success of PRAGMATIC at the end of these few lines, the list of main
speakers and collaborators who have been present over the years is included. To
make this school of research even more popular, the 2017 edition has been enriched
by the present nice volume that collects the lessons held during the period of the
school and all the material necessary to address the open problems proposed in
this edition. The authors, all of whom were involved in Pragmatic 2017, had the
wonderful idea of putting together both the preparatory material, the lessons made
during the school period, the open problems assigned and the state of the art at the
end of the three weeks of activity.

Already the intriguing title announces in an original and curious way the field
of research that is treated. Precisely, in this book powers of ideals and ideals of
powers are approached from three different points of view: algebra, combinatorics,
and geometry, with special regard to the interactions among these perspectives. I
believe that these notes will be useful not only for the group of participants in the
2017 edition of PRAGMATIC but also for all those who have interests in the study
of the powers of ideals and their applications in different fields of mathematics.
Moreover, the way the text is composed also provides a simple and fruitful way to
approach open issues in this area. The organizers of PRAGMATIC are very grateful
to Enrico Carlini, Huy Tài Hà, Brian Harbourne, and Adam Van Tuyl for making
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viii Foreword

this additional effort to be useful to the young mathematical community and for
doing so in the context of PRAGMATIC.

Here is the list (in a chronological order) of the main teachers involved in
all the editions of PRAGMATIC: David Eisenbud, Lawrence Ein, Anthony V.
Geramita, Juan Migliore, Klaus Hulek, Kristian Ranestad, Ciro Ciliberto, Rick
Miranda, Fyodor Zak, Massimiliano Mella, Igor Dolgachev, Alessandro Verra,
Olivier Debarre, Lucia Caporaso, Lucian Badescu, Francesco Russo, Giuseppe
Pareschi, Mihnea Popa, Jurgen Herzog, Volkmar Welker, Rosa Miró Roig, Giorgio
Ottaviani, Paltin Ionescu, Jaroslav A. Wisnieswski, Ralf Fröberg, Mats Boij, Alessio
Corti, Paolo Cascini, Yujiro Kawamata, Aldo Conca, Srikanth Iyngar, Anurag
Singh, Alessandro Chiodo, Filippo Viviani, Gian Pietro Pirola, Joan Carles Naranjo,
Brian Harbourne, and Adam Van Tuyl.

And here is a list of young collaborators involved during these years: S. Popescu,
V. Masek, A. Bigatti, C. Peterson, F. Flamini, A. Bruno, G. Pacienza, C. Casagrande,
A. Rapagnetta, M. Vladiou, X. Zheng, E. Nevo, L. Costa, D. Faenzi, L. Sola Condé,
J.C. Sierra, V. Crispin, A. Engström, A. Kasprzyk, Y. Gongyo, G. Codogni, J. Guéré,
L. Stoppino, V. Gonzalez-Alonso, E. Carlini, and Huy Tài Hà.

Catania, Italy Alfio Ragusa
September 2018



Preface

This book contains reorganized and extended versions of our lectures at PRAG-
MATIC 2017, held from June 19th to July 7th, 2017. PRAGMATIC (Promotion
of Research in Algebraic Geometry for MAThematicians in Isolated Centres) is
an annual summer school, started in 1997 and organized by the Università di
Catania, Catania, Italy. The goal of the school is to stimulate research in algebraic
geometry among Ph.D. students and early career researchers, especially those living
in isolated centers or peripheral universities all over Europe.

We celebrate PRAGMATIC’s twentieth anniversary with the theme “powers
of ideals and ideals of powers.” This theme became the title of our book. The
topics in this book are motivated by algebraic problems involving the relationship
between various notions of powers of ideals and by related geometric problems.
This includes, as just one example among a constellation of variations, the Waring
problem of writing a homogeneous polynomial as a minimal sum of powers of linear
homogeneous polynomials, which translates algebraically into studying ideals of
powers and geometrically into studying dimensions of secant varieties.

In these notes, powers of ideals and ideals of powers are approached from
three points of view—algebra, combinatorics, and geometry—and the interactions
between these perspectives will be developed. Readers are invited to explore the
evolution of the set of associated primes of higher and higher powers of an ideal.
For ideals associated with a combinatorial object like a graph or hypergraph, one
wishes to explain this evolution in terms of the original combinatorial objects.
Similar questions concern understanding the Castelnuovo–Mumford regularity of
powers of combinatorially defined ideals in terms of the associated combinatorial
data. From a more geometric point of view, one can consider how the relations
between symbolic and regular powers can be interpreted in geometrical terms. Other
topics to be presented include aspects of Waring type problems, symbolic powers
of an ideal and their invariants (e.g., the Waldschmidt constant, the resurgence), and
the persistence of associated primes.

ix



x Preface

When preparing our lectures for PRAGMATIC, our emphasis was on quickly
introducing the participants to open problems and questions in these research areas.
At the same time, we wanted to provide restricted versions of these problems and
questions focused on specific cases which participants, with a minimal background
in these areas, could tackle. Our intention was for these specific cases to be simple
enough that participants would make significant progress within the 3-week school
time frame, and yet important enough that their work could lead to publications and
further investigation of these problems and questions in more generality. With this
in mind, our focus was on the context of the problems and on how problems, results,
and methods have evolved. Consequently, our lecture notes often omit the detailed
proofs of stated theorems or just sketch out important ideas.

The book is divided into six parts. In the first part, we discuss the associated
primes of ideals and, in particular, the persistence property and the stability index
of these sets. In the second part, we investigate the asymptotic linearity of the
Castelnuovo–Mumford regularity of powers of a homogeneous ideal. Most of our
attention will be restricted to symbolic and ordinary powers of edge ideals of graphs.
The third part of the book is devoted to the containments between symbolic and
ordinary powers of ideals, focusing on squarefree monomial ideals and the defining
ideals of schemes of fat points. In Part IV, we examine the very recently introduced
notion of unexpected curves and the role of the SHGH conjecture in inspiring
it. In Part V, we discuss the Waring problem for homogeneous polynomials.
Specifically, we describe Sylvester’s algorithm for binary forms and the connection
to Strassen’s conjecture. Part VI of the book is a summary of materials presented at
the PRAGMATIC school. In particular, we have included a chapter on “The Art of
Research,” which aims at helping young researchers with advice on how to start a
research project, on how to collaborate, on how to write up their results, and on how
to present their findings.

We assume that the interested reader is familiar with basic concepts from
commutative algebra. Unexplained notations and terminology can be found in
standard texts [14, 25, 47, 63, 131, 137, 155, 166].

Torino, Italy Enrico Carlini
New Orleans, LA, USA Huy Tài Hà
Lincoln, NE, USA Brian Harbourne
Hamilton, ON, Canada Adam Van Tuyl
July 2017–December 2019
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Associated Primes of Powers of Ideals



Chapter 1
Associated Primes of Powers of Ideals

The primary decomposition of ideals in Noetherian rings is a fundamental result in
commutative algebra and algebraic geometry. It is a far reaching generalization of
the fact that every positive integer has a unique factorization into primes. We recall
one version of this result.

Theorem 1.1 Every ideal I in a Noetherian ring R has a minimal primary
decomposition

I = Q1 ∩ · · · ∩ Qs

where each Qi is a primary ideal and Q1 ∩ · · · ∩ ̂Qj ∩ · · ·Qs �⊂ Qj for all j =
1, . . . , s. Furthermore, the set of associated primes of I , that is,

ass(I) =
{
√

Q1 = P1, . . . ,
√

Qs = Ps

}

is uniquely determined by I .

The primary decomposition of an ideal is a standard topic in most introductory
commutative algebra books, e.g. see Atiyah-MacDonald [5, Chapter 5].

Starting in the 1970s, the following problem was investigated:

Question 1.2 Given an ideal I in a Noetherian ring R, how do the sets ass(I s)

change as s varies?

At first glance, it might be surprising that the set of associated primes of an ideal
changes when you take its power. However, as the next example shows (and the
many examples in the next chapter), new associated primes can appear in higher
powers, and in fact, all sorts of pathological behaviour can occur.
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Example 1.3 In the ring R = K[x, y, z], consider the monomial ideal I =
〈xy, xz, yz〉. Then this ideal has the primary decomposition

I = 〈x, y〉 ∩ 〈x, z〉 ∩ 〈y, z〉 = P1 ∩ P2 ∩ P3.

On the other hand, the primary decomposition of I 2 is given by

I 2 = 〈x2y2, x2yz, xy2z, x2z2, xyz2, y2z2〉
= 〈x, y〉2 ∩ 〈x, z〉2 ∩ 〈y, z〉2 ∩ 〈x2, y2, z2〉.

We thus have

ass(I) = {P1, P2, P3} � ass(I 2) = ass(I) ∪ {〈x, y, z〉}.

In 1979, Brodmann [24] proved the following result which gives an asymptotic
answer to Question 1.2.

Theorem 1.4 ([24]) For any ideal I ⊆ R in a Noetherian ring, there exists an
integer s0 such that

ass(I s) = ass(I s0) for all s ≥ s0.

As we shall see in Chap. 2, Theorem 1.4 inspires a number of new questions,
many of which only have partial solutions. Given the importance of Brodmann’s
result, the goal of this chapter is to sketch out the main ideas behind the proof of
Theorem 1.4. A by-product of our approach is to learn some techniques related to
associated primes that will hopefully be useful in your own research. As we move
forward, R will always denote a Noetherian ring.

As a final comment, this chapter is greatly indebted not only to Brodmann’s
original paper, but to the monograph of McAdam [136] and the lecture notes of
Swanson [159].

1.1 Associated Primes of Modules

We begin with a review/introduction to associated primes of modules. As we shall
see, this is the correct point-of-view to take when studying the associated primes of
I s . Much of this material is standard. We use Villarreal’s book [166] as a reference,
although other books contain this material.

Definition 1.5 Let M be an R-module. For any m ∈ M , the annihilator of m is

ann(m) = (0M :R m) = {r ∈ R | rm = 0M}.

It is a straightforward exercise to show that ann(m) is an ideal of R.
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Definition 1.6 Let N ⊆ M be modules over R. A prime ideal P ⊆ R is an
associated prime of the R-module M/N if there exists some m ∈ M such that

P = ann(m) = {r ∈ R | rm = 0M/N }

where m denotes the equivalence class of m in M/N , or equivalently,

P = (N :R m) = {r ∈ R | rm ∈ N}.

Note that if N = (0M) is the zero submodule of M , then P is an associated prime
of M ∼= M/(0M) if there exists an m ∈ M such that (0M :R m) = P . Thus P is an
associated prime of the module M if and only if P = ann(m) for some m ∈ M .

Definition 1.7 Let N ⊆ M be modules over R. The set of associated primes of
M/N is

AssR(M/N) = {P ⊆ R | P a prime ideal associated to M/N}.

We now state some useful facts about AssR(M/N).

Theorem 1.8 ([166, Corollary 2.1.18]) Let N ⊆ M be modules over a Noetherian
ring R. Then

|AssR(M/N)| < ∞.

Notice that we are using a slightly different notation for the set of associated
primes for modules versus the set of associated primes of an ideal (as in Theo-
rem 1.1). However, the relationship is explained in the next theorem.

Theorem 1.9 ([166, Corollary 2.1.28]) For any ideal J ⊆ R,

AssR(R/J ) = ass(J ).

1.2 Reducing the Problem

The strategy behind the proof of Theorem 1.4 is to focus on the set of associated
primes of the R-module I s/I s+1. We now explain why this is the case.

The reduction of the problem comes from the fact that we have the following
containments of sets.

Lemma 1.10 For any ideal I ⊆ R and any integer s ≥ 1, we have

AssR(I s/I s+1) ⊆ AssR(R/I s+1) ⊆ AssR(I s/I s+1) ∪ AssR(R/I s ).
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Proof The proof of this fact exploits the natural short exact sequence

0 −→ I s/I s+1 f−→ R/Is+1 g−→ R/Is −→ 0

where f is the identity map, and g is the ring homomorphism x + I s+1 �→ x + I s .
Suppose P ∈ AssR(I s/I s+1), i.e., there exits some m = m + I s+1 ∈ I s/I s+1

such that P = ann(m). But then f (m) = m ∈ R/Is+1, and so P is also an
associated prime of R/Is+1. This proves AssR(I s/I s+1) ⊆ AssR(R/I s+1).

Now suppose that P ∈ AssR(R/I s+1) \ AssR(I s/I s+1) with P = ann(m) for
some m ∈ R/Is+1. Note that m �∈ I s/I s+1, because if it was, then P would also be
an associated prime of I s/I s+1. So g(m) = m + I s �= 0R/I s . To finish the proof,
we will show that P = ann(m) = ann(g(m)), i.e., P ∈ AssR(R/I s).

If r ∈ ann(m), then rm ∈ I s+1 ⊆ I s , and thus r ∈ ann(g(m)). To prove the
reverse containment, suppose that there exits some t ∈ ann(g(m)) \ ann(m). In
particular, this means that tm ∈ I s , but tm �∈ I s+1. Hence tm + I s+1 ∈ I s/I s+1 is
a non-zero element.

We now claim that ann(tm) = ann(m), where we view tm = tm + I s+1 as an
element of I s/I s+1 and m = m + I s+1 as an element of R/Is+1. The containment
ann(m) ⊆ ann(tm) is straightforward because if rm ∈ I s+1, then r(tm) ∈ I s+1.
Now consider r ∈ ann(tm). Then rt ∈ ann(m) = P . The element t cannot be in P .
Indeed, if t ∈ P , then tm ∈ I s+1, which contradicts our earlier fact that tm �∈ I s+1.
So, since P is prime and t �∈ P , we have r ∈ P = ann(m). But then P = ann(tm)

is an associated prime of I s/I s+1 which contradicts our choice of P . So, no such t

can exist, i.e., ann(g(m)) \ ann(m) = ∅, as desired.

Brodmann’s proof reduces to proving the following theorem.

Theorem 1.11 For any ideal I ⊆ R, there exists an integer s� such that

AssR(I s/I s+1) = AssR(I s�

/I s�+1) for all s ≥ s�.

Indeed, we can use the above statement to prove Brodmann’s result.

Proof We want to show that there exists an integer s0 such that for all s ≥ s0,

ass(I s) = AssR(R/I s) = AssR(R/I s+1) = ass(I s+1).

By Theorem 1.11, there exists an integer s� such that if s ≥ s�,

AssR(I s+1/I s+2) = AssR(I s/I s+1) ⊆ AssR(R/I s+1)

where the last containment follows from Lemma 1.10. Using this inclusion, and
again using Lemma 1.10, we have the following inclusions:

AssR(R/I s+2) ⊆ AssR(R/I s+1) ∪ AssR(I s+1/I s+2) ⊆ AssR(R/I s+1).
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It then follows that for all t ≥ 1,

· · · ⊆ AssR(R/I s+t ) ⊆ AssR(R/I s+t−1) ⊆ · · · ⊆ AssR(R/I s+1).

By Theorem 1.8 we know that |AssR(R/I s+1)| < ∞, so this sequence must
eventually stabilize. That is, there exists some s0 ≥ s� such that for all s ≥ s0,
we have

AssR(R/I s ) = AssR(R/I s+1).

In other words, the sets ass(I s) stabilize for s ≥ s0.

Remark 1.12 Note that the s� of Theorem 1.11 is not necessarily the same s0 of
Theorem 1.4. However, as we will see in the next chapter (see Lemma 2.5) that
when I is a monomial ideal, these values are the same.

1.3 Sketch of the Missing Details

The discussion in the previous section seems to imply that Brodmann’s proof is
not overly complicated. However, the “nitty-gritty” details of Theorem 1.4 are
embedded in the proof of Theorem 1.11. We now attempt to explain the main steps
one needs to prove Theorem 1.11.

The first step is to change the “point-of-view” again. Instead of viewing I s/I s+1

as an R-module, you want to view it as an R/I -module. In particular, one needs to
show:

Lemma 1.13 Let I ⊆ R be an ideal and s a positive integer. Then

AssR(Is/I s+1) = AssR(Is+1/Is+2) if and only if AssR/I (I
s /I s+1) = AssR/I (I

s+1/Is+2).

Proof This result will follow from the fact that

P ∈ AssR(I s/I s+1) if and only if P/I ∈ AssR/I (I
s/I s+1).

Suppose P ∈ AssR(I s/I s+1). So, there exists an m + I s+1 ∈ I s/I s+1 such that
P = {r ∈ R | r(m + I s+1) = 0 + I s+1}. But then

P/I = {r + I | r ∈ P }
= {r + I | r(m + I s+1) = 0 + I s+1}
= {r + I | (r + I)(m + I s+1) = 0 + I s+1} = (0 :R/I m + I s+1).

In other words, P/I ∈ AssR/I (I
s/I s+1).
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Conversely, if P/I ∈ AssR/I (I
s/I s+1), then

P/I = {r + I | (r + I)(m + I s+1) = 0 + I s+1}

for some m + I s+1 in I s/I s+1. Since P = {r | r + I ∈ P/I },

P = {r | (r+I)(m+I s+1) = rm+I s+1 = 0+I s+1} = {r | r(m+I s+1) = 0+I s+1}.

Thus, P = (0 :R m + I s+1), and thus P ∈ AssR(I s/I s+1).

Thanks to Lemma 1.13 it is enough to prove Theorem 1.11 for AssR/I (I
s/I s+1).

The second step is to work in a new ring constructed from I and R.

Definition 1.14 Given an ideal I in the ring R, the associated graded ring is the
ring

GI (R) =
∞
⊕

s=0

I s

I s+1 where I 0 = R.

The ring GI (R) is a graded ring where the d-th graded piece is [GI (R)]d =
Id/Id+1. In particular, the 0-th graded piece is [GI (R)]0 = R/I . In this ring the
multiplication of homogeneous elements is defined by

Id/Id+1 × I e/I e+1 ×−→ Id+e/Id+e+1

(F + Id+1,G + I e+1) �→ (FG + Id+e+1).

Note that you need to verify that this map is well-defined, i.e., it is independent of
your coset representatives F and G.

The following fact about GI (R) is then used in Corollary 1.18 below; it can be
found in Atiyah-MacDonald’s book [5].

Theorem 1.15 ([5, Proposition 10.22]) If R is a Noetherian ring, and I ⊆ R is
an ideal, then GI (R) is a Noetherian ring.

The third step is to relate the prime ideals that appear in AssR/I (I
s/I s+1) to the

prime ideals of the ring GI (R).The desired relationship is described as a corollary
to the next theorem which can be found in Swanson’s paper [159].

Theorem 1.16 ([159, Proposition 5.7]) Let G be a submonoid of Nn. Let R be
a G-graded ring and M a G-graded R-module. Suppose that P ∈ AssR0(Mg),
where Mg is the degree g piece of M with g ∈ G. Then there exits a prime ideal
Q ∈ AssR(M) such that Q ∩ R0 = P . Furthermore, Q ∈ AssR(R).
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Corollary 1.17 Let I ⊆ R be an ideal, and suppose that

℘ ∈
⋃

s≥0

AssR/I (I
s/I s+1).

Then there exists a prime ideal ℘� ⊆ GI (R) such that

(i) ℘� ∩ [GI (R)]0 = ℘� ∩ (R/I) = ℘.
(ii) ℘� ∈ AssGI (R)(GI (R)).

Proof One applies Theorem 1.16 to our specific case. In particular, to apply this
theorem, let G = N, let M and R be our ring GI (R), and let g = s.

Corollary 1.17 then gives the following corollary.

Corollary 1.18 Let I ⊆ R be an ideal. Then

∣

∣

∣

∣

∣

∣

⋃

s≥0

AssR/I (I
s/I s+1)

∣

∣

∣

∣

∣

∣

< ∞.

Proof Corollary 1.17 (i) implies that each distinct prime ℘ ∈ ⋃

s≥0 AssR/I

(I s/I s+1) gives rise to a distinct prime ℘�. So, if
∣

∣

⋃

s≥0 AssR/I (I
s/I s+1)

∣

∣ =
∞, then Corollary 1.17 (ii) would imply that |AssGI (R)(GI (R))| = ∞. But
because GI (R) is Noetherian by Theorem 1.15, it follows from Theorem 1.8 that
|AssGI (R)(GI (R))| < ∞, thus giving a contradiction.

There are two technical arguments that need to be made. The first proof follows
McAdam’s proof [136, Lemma 1.1].

Lemma 1.19 For any ideal I ⊆ R, there exists an integer � such that for all s ≥ �,

〈0GI (R) :GI (R) [GI (R)]1〉 ∩ [GI (R)]s = (0GI (R)).

Proof The ideal 〈0GI (R) :GI (R) [GI(R)]1〉 is a homogeneous ideal in the Noethe-
rian graded ring GI (R). Suppose that F1, . . . , Fs are the generators of this ideal.
Set � = 1 + max{deg(F1), . . . , deg(Fs)}. Now suppose that F is a homogeneous
element of degree s ≥ � in this ideal, i.e., F = H1F1 + · · · + HsFs with each Hi

homogeneous. Moreover we must have deg Hi ≥ 1 for all i. But this means that
Hi ∈ I/I 2GI(R), so HiFi = 0GI (R), and thus F = 0GI (R).

In other words, all the elements in GI (R) that annihilate the degree one piece
[GI(R)]1 = I/I 2 have degree less than �. This lemma is then used to prove the
next lemma.
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Lemma 1.20 For any ideal I ⊆ R, there exists an integer � such that for all s ≥ �,

AssR/I (I
s/I s+1) ⊆ AssR/I (I

s+1/I s+2).

Proof Let G = GI (R), and let � be as in Lemma 1.19. Let s ≥ �, and ℘ ∈
AssR/I (I

s/I s+1) = AssG0(Gs). So, there exits a homogeneous element c + I s+1

of degree s in Gs such that

℘ = 〈0 + I s+1 :G0 c + I s+1〉.

We now claim that ℘ = 〈0 + I s+2 :G0 (c + I s+1)I/I 2〉 where (c + I s+1)I/I 2 is a
submodule of I s+1/I s+2.

The containment ℘ = 〈0+ I s+1 :G0 c+ I s+1〉 ⊆ 〈0+ I s+2 :G0 (c+ I s+1)I/I 2〉
is immediate, so it suffices to verify the reverse containment. Suppose that r + I ∈
〈0 + I s+2 :G0 (c + I s+1)I/I 2〉. So (rc + I s+1)I/I 2 = 0 + I s+2. But this means
that

rc + I s+1 ∈ (0 + I s+2 :G0 I/I 2) ∩ I s/I s+1

⊆ (0GI (R) :GI (R) [GI(R)]1) ∩ [GI(R)]s .

By Lemma 1.19, this means that rc+ I s+1 = 0+ I s+1. Thus r + I ∈ 〈0+ I s+1 :G0

c + I s+1〉 = ℘, as desired.
We now show that ℘ ∈ AssR/I (I

s+1/I s+2). We can localize so that we can
assume that ℘ is a maximal ideal of R/I . We first claim that there is an r+I 2 ∈ I/I 2

such that

(r + I 2)(c + I s+1) �= 0 + I s+2.

Indeed, if there was no such r , then we would have

℘ = 〈0 + I s+1 :G0 (c + I s+1)I/I 2〉 = R/I �= ℘.

So, let r + I 2 be such an element. Then

℘ = 〈0 + I s+2 :G0 (c + I s+1)I/I 2〉 ⊆ 〈0 + I s+2 :G0 (cr + I s+2)〉 � R/I.

Because ℘ is a maximal ideal, we must have ℘ = 〈0 + I s+2 :G0 (cr + I s+2)〉, i.e.,
℘ ∈ AssR/I (I

s+1/I s+2), as desired.

We can use these pieces to prove Theorem 1.11.

Proof By Lemma 1.13, it is enough to show that there exists an integer s0 such that

AssR/I (I
s/I s+1) = AssR/I (I

s0/I s0+1) for all s ≥ s0.
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It follows from Lemma 1.20 that there exists an integer � such that

AssR/I (I
�/I�+1) ⊆ AssR/I (I

�+1/I�+2) ⊆ · · · ⊆
⋃

s≥0

AssR/I (I
s/I s+1).

But by Corollary 1.18,
∣

∣

⋃

s≥0 AssR/I (I
s/I s+1)

∣

∣ < ∞. We thus have a sequence of
subsets in a finite set, where the i-th set is contained in the (i + 1)-th set. So, there
must exist some s0 such that

AssR/I (I
s0/I s0+1) = AssR/I (I

s0+1/I s0+2) = · · ·

thus completing the proof.

1.4 Final Comments

Brodmann’s Theorem (Theorem 1.4) is a good example of the idea in commutative
algebra that ideals behave “nicely” asymptotically (see also the later chapters on the
powers of ideals and regularity, giving more evidence of this idea).

Of course, Brodmann’s Theorem also inspires a number of natural questions
(e.g., given an ideal I , can we determine the value of s0). In the next chapter we
will explore some of these problems in the case I is a monomial ideal.

We end with a recent result of Hà, Nguyen, Trung, and Trung that shows if
s < s0, the sets ass(I s) need not be related to each other. Moreover, we can make
examples where s0 is arbitrarily large (although we may need to work in a very large
polynomial ring!).

Theorem 1.21 ([95, Corollary 6.8]) Let Γ be any finite subset of N+. Then there
exists a monomial ideal I in a polynomial ring R such that

m ∈ ass(I s) if and only if s ∈ Γ.

Here, m is the unique maximal monomial ideal of R.

Remark 1.22 The above result answers an old question first raised by Ratliff [148].



Chapter 2
Associated Primes of Powers
of Squarefree Monomial Ideals

In the previous chapter, we looked at a result of Brodmann (Theorem 1.4) concern-
ing the associated primes of powers of ideals. This theorem inspires a number of
natural questions. To state these questions, we introduce some suitable terminology.

Definition 2.1 The index of stability of an ideal I in a Noetherian ring R, denoted
astab(I), is defined to be

astab(I) := min{s0 | ass(I s) = ass(I s0) for all s ≥ s0}.

Definition 2.2 An ideal I in a Noetherian ring R is said to have the persistence
property if ass(I i) ⊆ ass(I i+1) for all i ≥ 1.

Brodmann’s result is the inspiration for the following questions:

Question 2.3 Let I be an ideal of a Noetherian ring R.

(i) What is astab(I)?
(ii) Does I have the persistence property?

(iii) What are the elements of ass(I s) with s ≥ astab(I)?

In general, these questions appear to be quite difficult. (Note that Theorem 1.21
implies the existence of ideals that fail the persistence property.) In this chapter, we
want to focus on the case that I is a (squarefree) monomial ideal in a polynomial
ring R = K[x1, . . . , xn]. In this context, we have a much better understanding of
the problems raised in Question 2.3.
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2.1 General (Useful) Facts About Monomial Ideals

As mentioned above, we are going to focus on the case of monomial ideals. This
tighter focus imposes restrictions on what primes can be associated primes, and it
gives us some information about the annihilator.

Lemma 2.4 Let I be any monomial ideal of R = K[x1, . . . , xn].
(i) If P ∈ ass(I), then P is also a monomial ideal, that is, P = 〈xi1 , . . . , xir 〉 for

some {xi1, . . . , xir } ⊆ {x1, . . . , xn}.
(ii) If P ∈ ass(I), then there exists a monomial m ∈ R \ I such that I : 〈m〉 = P .

Proof For (i), suppose that I has a monomial generator m that does not have
the form xa

i for some variable xi . We can then factor m as m = m1m2 where
gcd(m1,m2) = 1 with m1 �= 1 and m2 �= 1. We then have the identity

I = (J + 〈m1〉) ∩ (J + 〈m2〉)

where J is the monomial ideal generated by monomial generators of I except m. By
repeatedly applying this identity, we can rewrite I as the intersection of ideals of the
form 〈xai1

i1
, . . . , x

air

ir
〉. Each of these ideals are 〈xi1 , . . . , xir 〉-primary. Because the

associated primes of an ideal I are uniquely determined by I , any associated prime
of I must have the form P = 〈xi1, . . . , xir 〉 for some {xi1, . . . , xir } ⊆ {x1, . . . , xn}.

For statement (ii), since P ∈ ass(I), there exists an f ∈ R such that I : 〈f 〉 =
P . If f is not a monomial, we can write it as f = c1m1 + · · · + csms with ci ∈ k

and mi a monomial. By (i), we know that P = 〈xi1, . . . , xir 〉. So, for any xj ∈ P ,

f xj = c1m1xj + · · · + csmsxj ∈ I ⇒ mkxj ∈ I for each k ∈ {1, . . . , s}

since I is a monomial ideal. But this means that xj ∈ I : 〈mk〉 for all k ∈ {1, . . . , s}.
Since this is true for each xj ∈ P , we have

P ⊆
s
⋂

i=1

I : 〈mi〉.

If g ∈ ⋂s
i=1 I : 〈mi〉, then fg = c1m1g + · · · + csmsg ∈ I . This means that

g ∈ I : 〈f 〉 = P .
We have thus shown that P = ⋂s

i=1 I : 〈mi〉. But because a prime ideal is an
irreducible ideal, we must have P = I : 〈mi〉 for some i ∈ {1, . . . , s}.

In Brodmann’s proof of the asymptotic stability of ass(I s), he used the stability
of AssR(I s/I s+1) to prove the stability of AssR(R/I s+1). In general, these sets are
not equal. However, in the case of monomial ideals, these sets are the same.
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Lemma 2.5 For any monomial ideal I ⊆ R,

AssR(I s/I s+1) = AssR(R/I s+1) for all s ≥ 0.

Proof By Lemma 1.10, we always have AssR(I s/I s+1) ⊆ AssR(R/I s+1) for any
ideal in a Noetherian ring. It suffices to prove the reverse containment for monomial
ideals. Let P ∈ AssR(R/I s+1) = ass(I s+1). By Lemma 2.4 (i) and (ii) there exists
a monomial m ∈ R such that

P = 〈xi1, . . . , xir 〉 = I s+1 : 〈m〉 with m ∈ R \ I s+1.

So, for any xj ∈ P ,

mxj = m1 · · ·ms+1M ∈ I s+1

with mi a monomial generator of I and M a monomial. After relabelling, we can
assume that xj | (ms+1M). So, m1 · · ·ms | m, which implies that m ∈ I s .

We thus have m ∈ I s \ I s+1 and P = I s+1 : 〈m〉. But this is precisely the
condition for P ∈ AssR(I s/I s+1).

Corollary 2.6 For a monomial ideal I ⊆ R = K[x0, . . . , xn],

astab(I) = min
{

s0

∣

∣

∣ AssR(I s/I s+1) = AssR(I s0/I s0+1) for all s ≥ s0

}

.

For any monomial ideal I , we let G(I) denote the unique set of minimal
generators of I . For any monomial m = x

a1
1 · · · xan

n , we define the support of m

to be

supp(m) = {xi | ai > 0}.

We end this section with a useful localization “trick”. This theorem is useful because
it sometimes allows us to reduce to the case that P = 〈x1, . . . , xn〉 is the unique
monomial ideal that is also a maximal ideal. We first state a lemma which describes
the localization of a monomial ideal at an associated prime ideal.

Lemma 2.7 Let I ⊆ R = K[x1, . . . , xn] be a monomial ideal and suppose that
P = 〈xi1, . . . , xir 〉 ∈ AssR(R/I). Then

IP = 〈m1 | m = m1m2 ∈ G(I)〉 ⊆ RP = K[xi1, . . . , xir ]

where m1 is a monomial in the variables W = {xi1, . . . , xir } and m2 is a monomial
in the variables {x1, . . . , xn} \ W .
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Proof This result follows from the fact localizing R, respectively I , at the prime
ideal P = 〈xi1 , . . . , xir 〉 to form RP , respectively IP , is equivalent to setting all the
variables in R, respectively I , not in P equal to one.

Theorem 2.8 Let I ⊆ R = K[x1, . . . , xn] be a monomial ideal. Then

P = 〈xi1, . . . , xir 〉 ∈ AssR(K[x1, . . . , xn]/I s)

if and only if

P = 〈xi1 , . . . , xir 〉 ∈ AssS(K[xi1, . . . , xir ]/(IP )s),

where S = K[xi1, . . . , xir ] = RP .

Proof After relabelling, we can assume that P = 〈x1, . . . , xm〉, and we let K[P ] =
S.

(⇒) Suppose that P = 〈x1, . . . , xm〉 ∈ AssR(R/I s). Then there exists a
monomial m such that I s : 〈m〉 = P . We can rewrite m as m = m1m2, where
m1 is a monomial in K[P ] and m2 is a monomial in {xm+1, . . . , xn}.

For any monomial u in the variables {xm+1, . . . , xn}, we claim that I s : 〈mu〉 =
I s : 〈m〉. To see this, first note that mu �∈ I s , for if it were, then u ∈ I s : 〈m〉 = P ,
which is false since u �∈ P . For any xj ∈ P , (mu)xj = (mxj)u ∈ I s since mxj ∈
I s . So P ⊆ I s : 〈mu〉. Now take any monomial w ∈ R such that w ∈ I s : 〈mu〉. If
w is a monomial only in the variables {xm+1, . . . , xn}, then (mu)w = m(uw) ∈ I s

implies that uw ∈ P , which is again a contradiction since neither u nor w is divisible
by any of {x1, . . . , xm}. So I s : 〈mu〉 = P .

As a consequence, we can multiply m by a suitable monomial u in the variables
{xm+1, . . . , xn} so that m = m1m2 with m2 = (xm+1 · · · xn)

sm′
2. That is,

I s : 〈m1(xm+1 · · · xn)
sm′

2〉 = 〈x1, . . . , xm〉.

We now show that I s
P : 〈m1〉 = 〈x1, . . . , xm〉 in K[P ]. First, we show that

m1 �∈ I s
P . If it were, then there exists monomials w1, . . . , ws ∈ IP such that m1 =

w1 · · ·wsM for some monomial M ∈ K[P ]. But then

m = m1(xm+1 · · · xn)
sm′

2 = (w1 · · ·wsM)(xm+1 · · · xn)
sm′

2

= [w1(xm+1 · · · xn)][w2(xm+1 · · · xn)] · · · [ws(xm+1 · · · xn)]Mm′
2.

Note that for each i = 1, . . . , s, wi(xm+1 · · · xn) ∈ I . The above expression thus
implies that m ∈ I s , a contradiction. So m1 �∈ I s

P .

For any xi ∈ P , we have mxi ∈ I s . Thus, there exists w1, . . . , ws ∈ I such that

mxi = m1m2xi = w1 · · ·wsN = w1,1w1,2 · · ·ws,1ws,2N,
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where we have written each wi as wi = wi,1wi,2 with wi,1 a monomial in K[P ] and
wi,2 a monomial in the remaining variables. Thus, if we compare the monomials
in K[P ] on both sides of the above expression, we get (w1,1 · · ·ws,1) | m1xi. But
each wi,1 is a generator of IP by Lemma 2.7. So m1xi ∈ (IP )s . Thus the maximal
ideal 〈x1, . . . , xm〉 ⊆ (IP )s : 〈m1〉. Since m1 �∈ (IP )s , we have (IP )s : 〈m1〉 =
〈x1, . . . , xm〉, as desired.

(⇐) Suppose P = 〈x1, . . . , xm〉 ∈ Ass(K[P ]/(IP )s). Thus there exists a
monomial m ∈ K[P ] with m �∈ (IP )s such that (IP )s : 〈m〉 = P . We will show that

I s : 〈m(xm+1 · · · xn)
s〉 = 〈x1, . . . , xm〉.

We first note that m(xm+1 · · · xn)
s �∈ I s . If it were, then there exist w1, . . . , ws ∈

I such that m(xm+1 · · · xn)
s = w1 · · ·wsM. Rewriting each wi as wi = wi,1wi,2,

where wi,1 is a monomial in K[P ], and wi,2 is a monomial in the variables
{xm+1, . . . , xn}, we have w1,1 · · ·ws,1 | m. But each wi,1 corresponds to a generator
of IP by Lemma 2.7, so m ∈ (IP )s , contradicting the fact that 1 �∈ (IP )s : 〈m〉.

Now let xi be a generator of P . In the ring K[P ], mxi = m1 · · ·msM with
mi ∈ IP for each i. But then in R,

m(xm+1 · · · xn)
sxi = [m1(xm+1 · · · xn)] · · · [ms(xm+1 · · · xn)]M.

For each i = 1, . . . , s, the monomial mi(xm+1 · · · xn) ∈ I . Indeed, since mi is a
generator of IP , there is a generator wi ∈ I such that wi = mivi with vi in the vari-
ables {xm+1, . . . , xn} by Lemma 2.7. Since wi is squarefree, wi |mi(xm+1 · · · xn),
and thus mi(xm+1 · · · xn) ∈ I . Hence P ⊆ I s : 〈m(xm+1 · · · xn)

s〉. For the reverse
inclusion, consider any monomial w ∈ I s : 〈m(xm+1 · · · xn)

s〉. If there exists some
variable xi ∈ {xm+1, . . . , xn} such that xi | w, then w

xi
∈ I s : 〈m(xm+1 · · · xn)

s〉.
Indeed, if w = w′xi , then m(xm+1 · · · xn)

s(w′xi) = m1 · · ·msM, and because each
mi is squarefree and can be divisible by at most one xi in {xm+1, . . . , xn}, we have
xi | M . So

m(xm+1 · · · xn)
sw′ = m1 · · ·ms

(

M

xi

)

,

whence w′ ∈ I s : 〈m(xm+1 · · · xn)
s〉. We can now reduce to the case that w is a

monomial only in the variables of {x1, . . . , xm}. But this just means that w ∈ P , as
desired.

Remark 2.9 The above result first appeared in a paper of Francisco, Hà, and
Van Tuyl [76, Lemma 2.11], but was expressed in the language of induced
subhypergraphs of hypergraphs.
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2.2 Monomial Ideals and Connections to Graph Theory: A
First Look

Monomial ideals, most notably squarefree monomial ideals, have strong connec-
tions to combinatorics (e.g., graph theory, hypergraphs, simplicial complexes). In
fact, as we shall see throughout this monograph, a combinatorial point-of-view can
give us some new insights into algebraic questions, and vice versa. In this section,
we set up the dictionary between graph theory and squarefree monomial ideals. This
dictionary gives us a language to describe results about associated primes in terms of
the invariants and properties coming from graph theory. Future sections and chapters
will build upon this correspondence.

We write G = (V ,E) to denote the finite simple graph with vertex set V =
{x1, . . . , xn} and edge set E, i.e., E is a collection of subsets e ⊆ V with |e| = 2. We
may sometimes write (V (G),E(G)) if we wish to highlight the vertex set and edge
set of G. By identifying the vertices of V with the variables of R = K[x1, . . . , xn],
we can construct two monomial ideals.

Definition 2.10 The edge ideal of G is the ideal

I (G) = 〈xixj | {xi, xj } ∈ E〉

where the monomial generators correspond to the edges of G. The cover ideal of G

is the ideal

J (G) =
⋂

{xi ,xj }∈E

〈xi, xj 〉.

We pause to explain the significance of the name cover ideal.

Definition 2.11 A subset W ⊆ V (G) is a vertex cover if W ∩ e �= ∅ for all e ∈
E(G). A vertex cover W is a minimal vertex cover if no proper subset of W is a
vertex cover.

As the next lemma shows, the generators of the cover ideal J (G) correspond to
the minimal vertex covers of G.

Lemma 2.12 Let G be a graph with cover ideal J (G). Then

J (G) = 〈xW | W ⊆ V (G) is a minimal vertex cover of G〉

where xW :=∏xi∈W xi if W ⊆ V (G).

Proof Let L = 〈xW | W ⊆ V (G) is a minimal vertex cover of G〉.
Let xW be a generator of L with W a minimal vertex cover. Then, for every

edge e = {xi, xj } ∈ E(G), we have W ∩ e �= ∅. So, either xi ∈ W or xj ∈ W .
Consequently, either xi |xW or xj |xW , whence xW ∈ 〈xi, xj 〉. Since e is arbitrary,
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we have

xW ∈
⋂

{xi ,xj }∈E(G)

〈xi, xj 〉 = J (G).

Conversely, let m ∈ J (G) be any minimal generator. Note that m must be
squarefree since J (G) is the intersection of finitely many squarefree monomial
ideals. So m = xi1 · · · xir . Let W = {xi1, . . . , xir }. Since m ∈ 〈xi, xj 〉 for each
each {xi, xj } ∈ E(G). either xi |m or xj |m, and thus, xi ∈ W or xj ∈ W . Thus W is
a vertex cover. Let W ′ ⊆ W be a minimal vertex cover. Because xW ′ ∈ L and xW ′

divides m = xW , we have m ∈ L.

The minimal vertex covers of G are also related to the minimal primary
decomposition of the edge ideal I (G).

Lemma 2.13 Let G be a graph with edge ideal I (G). Then

I (G) =
⋂

W is a minimal vertex cover of G

〈x | x ∈ W 〉.

Proof Let K denote the ideal on the right hand side of the statement. If xixj ∈ I (G)

is a generator, then for every minimal vertex cover W , either xi or xj is in W .
Consequently, xixj ∈ 〈x | x ∈ W 〉 for all minimal vertex covers, thus proving the
containment I (G) ⊆ K .

The ideal K is an intersection of squarefree monomial ideals, so K is a squarefree
monomial ideal. Let m ∈ K be a squarefree minimal generator of K . Suppose xi1

divides m. The set W \ {xi1} is a vertex cover, so there is some minimal vertex cover
W1 ⊆ W \ {xi1}. Since m ∈ 〈x | x ∈ W1〉, there is some xi2 ∈ W1 that divides
m. If {xi1, xi2} ∈ E(G), then xi1xi2 ∈ I (G) divides m. If {xi1, xi2} is not an edge,
then W \ {xi1, xi2} is a vertex cover. Consequently, there is a minimal vertex cover
W2 ⊆ W \ {xi1, xi2}. Thus there is some xi3 ∈ W2 that divides m. If xi3 is adjacent
to xi1 or xi2 , then we have found a generator of I (G) that divides m. Otherwise,
{xi1, xi2, xi3} is an independent set, and W \ {xi1, xi2 , xi3} is vertex cover.

Continuing in this fashion, we will eventually find a minimal vertex cover Wt ⊆
W \ {xi1, . . . , xit } such that there is an xit+1 ∈ Wt that divides m and is adjacent to
one of xi1, . . . , xit (in particular, when {xi1, . . . , xit } is a maximal independent set).
So, there is a generator of I (G) that divides m. Thus K ⊆ I (G).

We now review some relevant definitions from graph which describe either
special constructions or special families of graphs. The complement of G is the
graph Gc = (V (Gc),E(Gc)) where V (Gc) = V (G) and edge set E(Gc) =
{{xi, xj } ⊆ V (G) | {xi, xj } �∈ E(G)}. In other words, it is the graph consisting
of the non-edges of G. The induced graph of G on W ⊆ V is the graph GW =
(W,E(GW )), where E(GW) = {{xi, xj } ∈ E(G) | {xi, xj } ⊆ W }.

The notion of an independent set is dual to vertex cover.
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Fig. 2.1 The five cycle graph
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Fig. 2.2 The induced graph
(C5)W with W = {x2, x3, x5}

x3

x2x5

Definition 2.14 If G is a finite simple graph, then a subset W ⊆ V (G) is an
independent set if V (G)\W is a vertex cover. Equivalently, W is an independent set
if the induced graph GW has no edges. An independent set is a maximal independent
set if it is maximal with respect to inclusion.

A cycle on n vertices, denoted Cn, is the graph

Cn = ({x1, . . . , xn}, {{x1, x2}, {x2, x3}, . . . , {xn−1, xn}, {xn, x1}}).

A graph G is a perfect graph if both G and Gc have no induced cycles Cn with n

odd and n ≥ 5. A clique on n vertices, denoted Kn, is the graph with V (Kn) =
{x1, . . . , xn} and edge set E(Kn) = {{xi, xj } | 1 ≤ i < j ≤ n}. Finally, a graph is a
bipartite graph if there is a partition of V (G) = V1 ∪ V2 such that every e ∈ E(G)

has the property that e ∩ Vi �= ∅ for i = 1, 2.
A colouring of G is an assignment of colours to each vertex of G so that adjacent

vertices receive distinct colours. Equivalently, a colouring of G is a partition of the
vertices, say V (G) = C1 ∪ · · · ∪ Cd ,where each Ci is an independent set. The
chromatic number of G, denoted χ(G), is the minimum number of colours needed
in a colouring.

Example 2.15 We illustrate some of these ideas with an example. The graph G =
C5 is given in Fig. 2.1. Then χ(G) = 3 since we can colour vertices x1, x3 RED,
vertices x2, x4 BLUE, and x5 PURPLE, but there is no way to colour G with two
colours. Note that {x1, x3} ∪ {x2, x4} ∪ {x5} is a partition of V (G) into independent
sets of C5. When we consider W = {x2, x3, x5}, the induced graph GW = (C5)W is
the the graph in Fig. 2.2.

2.3 The Index of Stability

We now look at Question 2.3.(i) for monomial ideals. In general, we know very
little about astab(I) for monomial ideals; this section summarizes some of the work
in this area. One of the few general results about Question 2.3 is the following result
of Hoa:
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Theorem 2.16 ([114]) Let I be a monomial ideal with n variables, s generators,
and d the largest degree of a minimal generator. Then

astab(I) ≤ max
{

d(ns + s + d))(
√

n)n+1(
√

2d)(n+1)(s−1), s(s + n)4sn+2d2(2d2)s
2−s+1

}

.

Example 2.17 The bound of Theorem 2.16 is very far from optimal. For example,
for the ideal I = 〈x1x2, x2x3〉 ⊆ K[x1, x2, x3], Theorem 2.16 gives the bound
astab(I) ≤ 81, 920, 000, but astab(I) = 1.

It would be nice to have better uniform bounds for all squarefree monomial
ideals. J. Herzog has suggested that perhaps astab(I) ≤ n−1, where n is the number
of variables of R. In all known cases, this bounds appears to hold.

If we restrict to some families of monomial ideals related to finite simple graphs
G. In particular, combinatorial information about G can now be used to place some
bounds on astab(I (G)) and astab(J (G)), significantly improving upon the general
bounds of Theorem 2.16. The proofs exploit many graph theoretic properties of the
graphs G; because of the technical nature of the proofs, we refer the reader to the
original papers by Simis, Vasconcelos, and Villarreal [153], Chen, Morey, and Sung
[37], and Francisco, Hà, and Van Tuyl [76]

Theorem 2.18 Let G be a finite simple graph.

(i) [153, Theorem 5.9] If G is a bipartite graph, then astab(I (G)) = 1.
(ii) [37, Corollary 4.3] If the smallest induced odd cycle of G has size 2k+1, then

astab(I (G)) ≤ n − k.
(iii) [76, Corollary 5.11] If G is a perfect graph, then astab(J (G)) = χ(G) − 1.

Remark 2.19 Simis, Vasconcelos, and Villarreal’s proof of statement (i) (see [153,
Theorem 5.9]) actually shows that I = I (G) is normally torsion free if G is
bipartite, but this implies that Im = I (m) for all m ≥ 1. One can then show that
ass(Im) = ass(I (m)) = ass(I) for all m ≥ 1.

2.4 Persistence of Primes

We now turn to Question 2.3.(ii), i.e., when does a monomial ideal have the
persistence property. Persistence for monomial ideals fails in general. We do,
however, have the following sufficient condition for persistence which is found in
Martínez-Bernal, Morey, and Villarreal [135].

Theorem 2.20 Suppose that I is a monomial ideal such that Ik+1 : I = Ik for all
k ≥ 1. Then I has the persistence property.

Proof Let P ∈ ass(I k). By Theorem 2.8, we can assume that P = 〈x1, . . . , xn〉 is
the maximal homogeneous ideal; furthermore, it is enough to show that P persists.
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Since P ∈ ass(I k), there exists a monomial m ∈ R \ Ik such that Ik : 〈m〉 = P .
Since m ∈ R \ Ik , m �∈ Ik = Ik+1 : I . So, there exists a monomial q ∈ I such that
mq �∈ Ik+1. Now for each i = 1, . . . , n, the variable xi satisfies

(mq)xi ∈ (mxi)q ∈ IkI = Ik+1 because mxi ∈ Ik.

This implies that P ⊆ Ik+1 : 〈mq〉. Because mq �∈ Ik+1, Ik+1 : 〈mq〉 � 〈1〉, i.e.,
Ik+1 : 〈mq〉 is a proper monomial ideal of R, and in particular, it must be a subset of
P . So P = Ik+1 : 〈mq〉. But since mq ∈ R \ Ik+1, this implies that P ∈ ass(I k+1).

Remark 2.21 Herzog-Qureshi [107] called an ideal I Ratliff if Ik+1 : I = Ik for
all k ≥ 1. They show that if I is any ideal (not just a monomial ideal) that is Ratliff,
then I has the persistence property.

Example 2.22 Theorem 2.20 does not classify ideals with the persistence property.
As an example, consider the Stanley-Reisner ideal of the triangulation of the
projective plane, i.e.,

I = 〈x1x2x5, x1x3x4, x1x2x6, x1x3x6, x1x4x5,

x2x3x4, x2x3x5, x2x4x6, x3x5x6, x4x5x6〉.

Then a computer algebra program can show that I 2 : I = I , but I 3 : I �= I 2, so I

is not Ratliff. However, I has the persistence property.

While the above example shows that not every monomial ideal will satisfy Ik+1 :
I = Ik for all k, Martínez-Bernal, Morey, and Villarreal [135] showed that equality
holds for all edge ideals. Consequently, all edge ideals have the persistence property
by Theorem 2.20. We sketch out the main ideas of this result since it is a nice
example of using graph theory to prove a result in commutative algebra.

We first introduce the relevant graph theory.

Definition 2.23 A matching of a graph G = (V ,E) is a subset {e1, . . . , es} ⊆ E

such that ei∩ej = ∅ for all i �= j . The matching number is the size of the maximum
matching of G; it is denoted α′(G). Note that if |V | = n, then α′(G) ≤ n

2 . The
deficiency of G, denoted def(G), is equal to n − 2α′(G).

Observe that def(G) counts the number of vertices in G that are not covered by any
edge in a maximum matching.

We now introduce the operation of duplication.

Definition 2.24 If G = (V ,E) is a finite simple graph and x ∈ V , then the
duplication of x in a graph G is the new graph G′ = (V ′, E′) where V ′ = V ∪ {x ′}
for some new vertex x ′ and E′ = E ∪ {{x ′, y} | {x, y} ∈ E}.

In other words, if we duplicate a vertex x in a graph G, we are adding a new
vertex x ′ and joining this new vertex to all the vertices to which x is adjacent. More
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(i)

x3

x2

x1

x5

x4

(ii)

x3

x2

x1

x5

x4

x′
1

(iii)

x3

x2

x1

x5

x4

x′
1

x′′
1

x′
4

Fig. 2.3 Duplication: (i) Graph G, (ii) G with x1 duplicated, and (iii) G(3,1,1,2,1)

generally, if a = (a1, . . . , an) ∈ N
n, then Ga will denote the graph we obtain by

duplicating vertex xi successively ai −1 times. (If ai = 0, then this means we delete
the vertex xi .)

Example 2.25 We illustrate the notation of duplication. Our initial graph G is the
graph on the left in Fig. 2.3. The second graph (ii) shows the graph we obtain if we
form the duplication of x1. The final graph in (iii) shows the graph G(3,1,1,2,1). In
this case, we duplicate the vertex x1 twice, and we duplicate the vertex x4 once, and
leave the remaining vertices alone.

Give an edge f = {xi, xj } ∈ E, we shall let Gf denote the duplication of the
vertices xi and xj . Note that if ek is the standard basis vector of Nn, then Gf =
G1+ei+ek where 1 is the vector of all ones. With this notation, we can now state the
required combinatorial result.

Theorem 2.26 ([135, Theorem 2.8]) Let G be a graph. Then def(Gf ) = δ for all
f ∈ E if and only if def(G) = δ and α′(Gf ) = α′(G) + 1 for all f ∈ E.

As an aside, to prove this combinatorial result, Martínez-Bernal et al. required a
classical result on matchings attributed to Berge (see [135, Theorem 2.7]). For the
interested reader, we have included this graph theory result.

Theorem 2.27 For any graph G,

def(G) = max{c0(G \ S) − |S| | S ⊆ V }

where c0(−) denotes the number of connected components with an odd number of
vertices.

The main insight of Martínez-Bernal et al. is that monomials in I (G)k \ I (G)k+1

are related to duplications of the graph G and the matching numbers of these new
graphs. We record here only the statement of the technical lemma. Given a vector
a = (a1, . . . , an) ∈ N

n we use the notation xa for x
a1
1 · · · xan

n , and |a| = a1+· · ·+an.
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Lemma 2.28 Let G be a graph on n vertices with edge ideal I (G) = 〈m1, . . . ,mt 〉
where the m′

is are the minimal generators. Let a = (a1, . . . , an) ∈ N
n, and mc =

m
c1
1 · · ·mct

t where c = (c1, . . . , ct ) ∈ N
t . Then

(1) xa = xδmc where |δ| = def(Ga) and |c| = α′(Ga).
(2) xa ∈ I (G)k \ I (G)k+1 if and only if k = α′(Ga).
(3) (Ga)f = (Ga){xi ,xj } for any edge f = {x ′

i , x
′′
j } of Ga where x ′

i , respectively, x ′′
j

is a duplication of xi , respectively, xj .

We use the above results to now prove that all edge ideals have the persistence
property.

Theorem 2.29 ([135, Corollary 2.17]) For any graph G, the edge ideal I (G)

satisfies I (G)k+1 : I (G) = I (G)k for all k ≥ 1. In particular, I (G) has the
persistence property.

Proof If we can show that I (G)k+1 : I (G) = I (G)k for all k ≥ 1, then I (G)

has the persistence property by Theorem 2.20. Since the containment I (G)k ⊆
I (G)k+1 : I (G) is straightforward to check, it suffices to show that I (G)k+1 :
I (G) ⊆ I (G)k .

Since I (G) and I (G)k+1 are monomial ideals, so is the colon ideal I (G)k+1 :
I (G). Let {m1, . . . ,mt } be the minimal generators of I (G), and consider any
monomial xa ∈ I (G)k+1 : I (G). Thus, xaml ∈ I (G)k+1 for all l = 1, . . . , t .
Note that if xaml ∈ I (G)k+2, then xa ∈ I (G)k . So, we can assume that xaml ∈
I (G)k+1\I (G)k+2. Because ml = xixj for some i and j , we have xaml = xa+ei+ej .
Thus by Lemma 2.28 (2), α′(Ga+ei+ej ) = k + 1. Furthermore, since this is true for
each mi , this means that for each edge f = {xi, xj } of G, α′((Ga){xi ,xj }) = k + 1.

Now for any edge {x ′
i , x

′′
j } of Ga where x ′

i and x ′′
j are the duplicated vertices of

xi and xj , Lemma 2.28 (3) gives

(Ga)
{x ′

i ,x
′′
j } = (Ga){xi ,xj }.

As a result, for all edges f ∈ Ga we have α′((Ga)f ) = k + 1, and

def((Ga)f ) = (|a| + 2) − 2(k + 1) = |a| − 2k.

By Theorem 2.26, we can deduce that def(Ga) = |a| − 2k. By Lemma 2.28 (1),
the monomial xa is equal to xδmc where |δ| = def(Ga) and |c| = α′(Ga). Here
mc = m

c1
1 · · ·mct

t . Comparing the degrees of both sides of xa = xδmc, we have

|a| = (|a| − 2k) + 2|c| ⇔ k = |c|.

But this means that mc ∈ I (G)k , and thus xa ∈ I (G)k , as desired.
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Fig. 2.4 A graph whose
cover ideals fails the
persistence property;
originally discovered by
[123]

x1 x2 x3 x4

x8x7x6x5

x9 x10 x11 x12

Theorem 2.29 shows that all edge ideals of graphs have the persistence property.
This leads to the natural question of whether cover ideals have this property. For
many large classes of graphs, this is indeed the case as shown by Francisco, Hà, and
Van Tuyl.

Theorem 2.30 ([76]) If G is a perfect graph, then J (G) has the persistence
property.

In fact, there are a number of graphs G that are not perfect, but J (G) has
the persistence property (e.g., the cover ideals of cycles). For a while, it was
thought that cover ideals of all graphs (and in fact, all squarefree monomial ideals)
satisfied the persistence property. Francisco, Hà, and Van Tuyl formulated a graph
theory conjecture, that if true, would have implied the persistence property (see
[74]). Interestingly, T. Kaiser, M. Stehlík, R. Škrekovski [123], all graph theorists,
disproved this graph theory conjecture. The example, which is given below, is
another nice illustration of the intersection between graph theory and commutative
algebra.

Example 2.31 ([123]) The cover ideal of the graph G in Fig. 2.4 fails to have
the persistence property. In particular, the maximal ideal is an associated prime of
J (G)3, but it is not an associated prime of J (G)4. This graph G can be extended to
an infinite family of graphs that fail to have the persistence property. The details are
worked out in a paper of Hà and Sun [93].

One obvious open question is the following:

Question 2.32 Classify all finite simple graphs G whose cover ideal fails to have
the persistence property.

It should be noted that there are some other families of squarefree monomial
ideals (that are neither edge ideals or cover ideals) that are known to satisfy the
persistence property. This includes polymatroidal ideals studied by Herzog, Rauf,
and Vladoiu [111] and some generalized cover ideals studies by Bhat, Biermann,
and Van Tuyl [16].



26 2 Associated Primes of Powers of Squarefree Monomial Ideals

2.5 Elements of ass(I s)

We now turn to the problem of determining the elements of ass(I s), i.e., the focus
of Question 2.3.(iii). We will focus on the cover ideals of graphs, although many
of these ideas extend to all squarefree monomial ideals using the language of
hypergraphs (see [76] for more details). Some of the material of this section can
also be found in the paper of Van Tuyl [164].

The key idea that you should take away is that if P = 〈xi1 , . . . , xir 〉 ∈
ass(J (G)s), then something “interesting” is happening on the induced graph GP ,
where we view P as both an ideal generated by the variables and as a subset
P ⊆ V (G). Here GP is the induced graph on P , that is, the graph with the vertex
set P and edge set E(GP ) = {e ∈ E(G) | e ⊆ P }. Specifically, associated primes
are related to colourings of the graph.

The following theorem of Francisco, Hà, and Van Tuyl [76], which is interesting
in its own right, shows that the chromatic number is related to powers of ideals.

Theorem 2.33 ([76]) For any graph G on n vertices,

χ(G) = min{d | (x1 · · · xn)
d−1 ∈ J (G)d}.

Proof For any subset W ⊆ V (G), we set xW =∏xi∈W xi in R = K[x1, . . . , xn].
(⇒) Suppose that (x1 · · · xn)

d−1 ∈ J (G)d . Then there exists d minimal vertex
covers W1, . . . ,Wd (not necessarily distinct) such that xW1 · · · xWd | (x1 · · · xn)

d−1.

For each xi ∈ {x1, . . . , xn}, there exists some Wj such that xi �∈ Wj ; otherwise, if
xi ∈ Wj for all 1 ≤ j ≤ d , then the power of xi is d in xW1 · · · xWd , from which it
follows that xW1 · · · xWd cannot divide (x1 · · · xn)

d−1, a contradiction.
Now form the following d sets:

C1 = V \ W1

C2 = (V \ W2) \ C1

C3 = (V \ W3) \ (C1 ∪ C2)

...

Cd = (V \ Wd) \ (C1 ∪ · · · ∪ Cd−1).

It suffices to show that C1, . . . , Cd form a d-colouring of G. We first note that by
construction, the Cis are pairwise disjoint. As well, because each Ci ⊆ V \ Wi ,
each Ci is an independent set. So it remains to show that V = C1 ∪ · · · ∪ Cd . If
x ∈ V , there exists some Wj such x �∈ Wj , whence x ∈ V \ Wj . Hence x ∈ Cj or
x ∈ (C1 ∪ · · · ∪ Cj−1). Thus χ(G) ≤ d .
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(⇐) It suffices to show that (x1 · · · xn)
χ(G)−1 ∈ J (G)χ(G). Let C1 ∪ · · · ∪ Cχ(G)

be a χ(G)-colouring of G. For each i = 1, . . . , χ(G), set

Yi = C1 ∪ · · · ∪ ̂Ci ∪ · · · ∪ Cχ(G).

Since Yi = V \Ci , and because Ci is an independent set, the set Yi is a vertex cover
of G. Hence xYi ∈ J (G) for i = 1, . . . , χ(G). It follows that

χ(G)
∏

i=1

xYi =
(

χ(G)
∏

i=1

xCi

)χ(G)−1 = (x1 · · · xn)
χ(G)−1 ∈ J (G)χ(G).

The next lemma is similar to the above result, and will be used below.

Lemma 2.34 Let G be a finite simple graph on V (G) = {x1, . . . , xn} with
cover ideal J (G). Suppose that for some independent set C ⊆ V , the monomial
(x1 · · · xn)

d−1xC ∈ J (G)d . Then χ(G) ≤ d + 1.

Proof Let W = V \ C. Since C is an independent set, W is a vertex cover of G.
It follows that (x1 · · · xn)

d = ((x1 · · · xn)
d−1xC)xW ∈ J (G)d+1. By Theorem 2.33,

this implies that χ(G) ≤ d + 1.

We need to recall some more graph theory. Below, if G is a graph with x ∈ V (G),
then G \ {x} denotes the graph one obtains by removing x and all edges containing
x from G.

Definition 2.35 A graph G is critically s-chromatic if χ(G) = s, and for every
x ∈ V (G), χ(G \ {x}) < s.

Example 2.36 Let G = Cn be the n-cycle with n odd. Then G is a critically 3-
chromatic graph since χ(G) = 3, but if we remove any vertex x, χ(G \ {x}) = 2.

Example 2.37 Let G = Kn be the clique of size n. Then G is a critically n-
chromatic graph since χ(G) = n, but if we remove any vertex x, G \ {x} = Kn−1,
and thus χ(G \ {x}) = n − 1.

Remark 2.38 In the above examples, the chromatic number of G \ {x} is one less
than χ(G) for each vertex x. This holds in general, i.e., if G is critically s-chromatic,
then χ(G\{x}) = s−1 for all x ∈ V (G). Note that the definition implies that χ(G\
{x}) ≤ s − 1. Suppose that χ(G \ {x}) < s − 1. The colouring of G \ {x} combined
with a distinct colour given to x gives an s−1 colouring of G, contradicting the fact
that χ(G) = s. So χ(G \ {x}) = s − 1.

Remark 2.39 You should be able to convince yourself that the only critically
1-chromatic graph is the graph of an isolated vertex, and the only critically 2-
chromatic graph is K2. The only critically 3-chromatic graphs are precisely the
graphs G = Cn with n odd. However, for s ≥ 4, there is no known classification of
critically s-chromatic graphs.
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As we saw in Lemma 2.4, when I is a monomial ideal and P ∈ ass(I), then there
is a monomial m such that I : 〈m〉 = P . When I is the power of a cover ideal, we
can deduce some further information about the monomial m.

Lemma 2.40 Let G be a finite simple graph on V = {x1, . . . , xn} with cover ideal
J (G). Suppose that 〈x1, . . . , xn〉 ∈ ass(J (G)d). If m is such that J (G)d : 〈m〉 =
〈x1, . . . , xn〉, then m | (x1 · · · xn)

d−1.

Proof If m � (x1 · · · xn)
d−1, then there exists some xi in m whose exponent is at

least d . Thus, the exponent of xi in mxi is at least d + 1. Because mxi ∈ J (G)d ,
there exist generators m1, . . . ,md ∈ J (G) (not necessarily distinct) such that

mxi = m1 · · ·mdN

for some monomial N . Because each mi is squarefree, the exponent of xi in mi is
at most one. So xi | N , whence m = m1 · · ·md(N

xi
) ∈ J (G)d , a contradiction since

m �∈ J (G)d .

As the next theorem shows, some of the associated primes of J (G)s are actually
detecting induced subgraphs that are critically (s + 1)-chromatic.

Theorem 2.41 Let G be a graph and suppose P ⊆ V (G) is such that GP is
critically (s + 1)-chromatic. Then

(1) P �∈ ass(J (G)d) for 1 ≤ d < s.
(2) P ∈ ass(J (G)s).

Proof By Lemma 2.8, we can assume that G = GP and P = 〈x1, . . . , xn〉.
(1) Suppose that P = 〈x1, . . . , xn〉 ∈ ass(J (G)d) with 1 ≤ d < s. Then

there exists some monomial m such that J (G)d : 〈m〉 = 〈x1, . . . , xn〉. By
Lemma 2.40, m | (x1 · · · xn)

d−1, i.e., the exponent of each xi in m is at most
d − 1. On the other hand, if mxi | (x1 · · · xn)

d−1 for some i, then since
mxi ∈ J (G)d , we would have (x1 · · · xn)

d−1 ∈ J (G)d , whence χ(G) ≤ d

by Theorem 2.33, a contradiction. Thus, mxi � (x1 · · · xn)
d−1, and hence,

m = (x1 · · · xn)
d−1. So mxi = (x1 · · · xn)

d−1xi ∈ J (G)d for each i = 1, . . . , n.
We now apply Lemma 2.34 with C = {xi} to conclude that χ(G) ≤ d + 1 <

s + 1 = χ(G). But this is a contradiction. Hence, P �∈ ass(J d) if 1 ≤ d < s.
(2) We are given

χ(G) = min{d |(x1 · · · xn)
d−1 ∈ J (G)d} = s + 1

so m = (x1 · · · xn)
s−1 �∈ J (G)s . In other words, we have, J (G)s : 〈m〉 � 〈1〉,

and hence J (G)s : 〈m〉 ⊆ 〈x1, . . . , xn〉. We will now show that J (G)s : 〈m〉 ⊇
〈x1, . . . , xn〉; the conclusion will then follow from this fact.
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Since χ(G) is critically (s+1)-chromatic, by Remark 2.38 we have χ(G\{xi}) =
s for each xi ∈ V (G). Let

V (G \ {xi}) = C1 ∪ · · · ∪ Cs

be the s colouring of V (G \ {xi}) where Ci denotes all the vertices coloured i. Then

V (G) = C1 ∪ · · · ∪ Cs ∪ {xi}

is an (s + 1)-colouring of G.
For j = 1, . . . , s, set

Wj = C1 ∪ · · · ∪̂Cj ∪ · · · ∪ Cs ∪ {xi}.

Each Wj is a vertex cover, so xWj ∈ J (G). Thus

s
∏

j=1

xWj ∈ J (G)s.

But
∏s

j=1 xWj = (x1 · · · xn)
s−1xi . Thus, xi ∈ J (G)s : 〈m〉. This is true for each

xi ∈ V (G), whence 〈x1, . . . , xn〉 ⊆ J (G)s : 〈m〉 ⊆ 〈x1, . . . , xn〉, as desired.

Example 2.42 We consider the following graph

x3

x2

x1

x5

x4

x6

Note that the induced graph on {x1, x2, x6} is a K3 (and C3), a critically 3-chromatic
graph. So P = 〈x1, x2, x6〉 is in Ass(J (G)2), but not in Ass(J (G)). Similarly, since
the induced graph on {x1, x2, x3, x4, x5} is a C5, we will have 〈x1, x2, x3, x4, x5〉 ∈
Ass(J (G)2).

When s = 2, we can find a converse of Theorem 2.41. A complete characteriza-
tion of the associated primes of J (G)2 was first given in the Francisco, Hà, and Van
Tuyl [75].

Theorem 2.43 For any graph G, P ∈ ass(J (G)2) if and only if

(i) P = 〈xi, xj 〉 and {xi, xj } ∈ E(G), or
(ii) P = 〈xi1 , . . . , xir 〉 where r is odd and GP = Cr , an odd cycle.
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Unfortunately, the converse of Theorem 2.41 is false in general; that is, if
P ∈ ass(J (G)s), but P �∈ ass(J (G)d) with 1 ≤ d < s, then the graph GP is
not necessarily a critically (s + 1)-chromatic graph.

Example 2.44 Consider the graph of Example 2.42. Then the prime ideal P =
〈x1, x2, x3, x4, x5, x6〉 ∈ ass(J (G)3), but not in ass(J (G)) or ass(J (G)2). However,
the graph G = GP is not critically 4-chromatic. In fact, χ(G) = 3.

What is happening here is that we are looking in the “wrong” graph. We need to
consider a larger graph that contains our initial graph as a subgraph. This approach
is similar to the approach we introduced in the previous section when we described
the duplication of a vertex to study powers of I (G). To study powers of J (G), we
need a similar construction.

Definition 2.45 Given a graph G = (V (G),E(G)) and integer s ≥ 1, the s-th
expansion of G, denoted Gs , is the graph constructed from G as follows: (a) replace
each xi ∈ V (G) with a clique of size s on the vertices {xi,1, . . . , xi,s}, and (b) two
vertices xi,a and xj,b are adjacent in Gs if and only if xi and xj were adjacent in G.

Example 2.46 We illustrate this example when G = C4, and we construct G2.
Recall that C4 is the graph:

x3

x2x1

x3

Then the second expansion of G is the graph:

x3.1

x2.1x1.1

x4.1

x4,2 x3,2

x2,2x1,2

The following result of Francisco, Hà, and Van Tuyl gives a combinatorial
interpretation for the elements of ass(J (G)s) in terms of colourings and expansions
of the graph G.
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Theorem 2.47 ([76]) Let G be a graph with cover ideal J (G). Then
〈xi1, . . . , xir 〉 ∈ ass(J (G)s) if and only if there exists a set T ⊆ V (Gs) with

{xi1,1, xi2,1, . . . , xir ,1} ⊆ T ⊆ {xi1,1, . . . , xi1,s, . . . , xir ,1, . . . , xir ,s}

such that the induced graph (Gs)T is a critically (s + 1)-chromatic graph.

The proof is a mixture of a number of ingredients. First, instead of looking
at the primary decomposition, one considers the irreducible decomposition of
J (G)s . Then one uses tools such as generalized Alexander duality, polarization and
depolarization of monomial ideals, and a result of Sturmfels and Sullivant [156]. We
have only stated the result for cover ideals of graphs, but the result holds also for
cover ideals of hypergraphs, i.e., any squarefree monomial ideal.

Example 2.48 Let us return to Example 2.42 and explain why 〈x1, x2, x3, x4, x5, x6〉
appears in ass(J (G)3). We form G3, the 3-rd expansion of G. If we consider the
induced subgraph on T = {x1,1, x2,1, x3,1, x4,1, x5,1, x5,2, x6,1} ⊆ V (G3), we find
the graph

x3,1

x2,1

x1,1

x5,1

x4,1

x6,1x5,2

You can now convince yourself that this graph is critically 4-chromatic. Conse-
quently, 〈x1, x2, x3, x4, x5, x6〉 ∈ ass(J (G)3).

Remark 2.49 The work of Francisco, Hà, and Van Tuyl on the associated primes
of I s when I is a squarefree monomial ideal takes the point of view that I was
the cover ideal of a hypergraph, and consequently, the generators correspond to
minimal vertex covers. Hien, Lam, and Trung [112] took an alternative point-of-
view. They viewed the generators of I as the edges of a (hyper)graph, and described
the associated primes in terms of this (hyper)graph.

Remark 2.50 Bayati, Herzog, and Rinaldo [12] have shown that for any monomial
ideal I , there is an algorithm to find all the primes in ass(I astab(I )) using Koszul
homology.

As we have shown, there has been progress on the problems raised in Ques-
tion 2.3. However, there are still a number of interesting problems that remain open
(including some of the problems distributed at PRAGMATIC; see Chap. 19). We
leave this chapter with another question that is based upon computer experiments of
Francisco, Hà, and Van Tuyl. Specifically:

Question 2.51 Let I be any squarefree monomial ideal. If P ∈ ass(I 2), is P ∈
ass(I s) for all s ≥ 2?
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Note that when I is the cover ideal of a graph, then it is known that ass(I 2) ⊆
ass(In) for all n ≥ 2. Furthermore, by the work of Martínez-Bernal, Morey, and
Villarreal, we also know it is true for all edge ideals. The above question asks if this
behaviour is true for all squarefree monomial ideals.



Chapter 3
Final Comments and Further Reading

As we have hopefully demonstrated in the last two chapters, Question 1.2 has
motivated a number of interesting results, including some nice connections with
combinatorics. Although we cannot cover all of the existing literature, here are some
suggested references for further reading.

The monograph of McAdams [136] gives a summary of many of the results that
were discovered in the 1970s by people such as Brodmann, Ratliff, and McAdams.
Ratliff [148] provides a historical introduction to the topic. Note that in older papers,
Question 1.2 is sometimes expressed as understanding the asymptotic prime divisors
of an ideal. Swanson’s lecture notes [159] also provide an introduction to these
results. It works out many of the details that were explained in the first chapter.

In the past decade, Question 1.2 has been revisited primarily in the case that I is
a monomial ideal. As shown in the previous chapter, when I is a monomial ideal,
one may be able to associate to I a combinatorial object that may encode (or relates
to) the elements of ass(I s). One of the first papers taking this approach is a paper of
Chen, Morey, and Sun [37] which considers the case that I = I (G) is an edge ideal.
Among other things, they show that the existence of certain structures in the graph
G forces the existence of elements in ass(I (G)s). Martínez-Bernal, Morey, and
Villarreal [135] later showed that all edge ideals I (G) have the persistence property.
Recently, Lam and Trung [128] have shown how to describe all the elements of
ass(I (G)s) in terms of a graph theoretical tool called the ear decomposition of a
graph. This work builds upon earlier work of Hien, Lam, and Trung [112] and Hien
and Lam [112]. Terai and Trung [161] and Francisco, Hà, and Van Tuyl [75] both
consider the special case of ass(I 2) when I is an ideal constructed from a graph or
a hypergraph.

There is a dual notion of an edge ideal, called the cover ideal. Taking the point-
of-view that a monomial ideal I is a cover ideal of a hypergraph, Francisco, Hà, and
Van Tuyl [76] described all other elements of ass(I s) in terms of colourings of the
associated hypergraph (and hypergraphs built from the original hypergraph). This
approach was described in this chapter; also see the survey article of Francisco,
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Hà, and Mermin [77]. The cover ideal point-of-view was also used by Bhat,
Biermann, and Van Tuyl [16] to describe a family of ideals constructed from trees
with the persistence property and compute its index of stability. Nasernejad and
Khashyarmanesh [142] considered similar ideals to find another family of ideals
with the persistence property.

One can also consider Question 1.2 for arbitrary monomial ideals, not just
squarefree monomial ideals. The papers of Herzog and Qureshi [107] and Herzog,
Rauf, and Vladoiu [111] identify some families of monomial ideals (most notably,
the family of polymatroidal ideals) that have the persistence property. In addition,
they also have some results on the index of stability for these families and the stable
set of the associated primes (the set ass(I s0) of Theorem 1.4). Khashyarmanesh and
Nasernejad [126] have also looked at the stable set ass(I s0); in particular, they show
that for any set of prime monomial ideals P = {P1, . . . , Ps} in K[x1, . . . , xn], there
is a monomial ideal I with ass(I s0) = P . When I is a squarefree monomial ideal,
Bayati, Herzog, and Rinaldo [12] have shown how to compute ass(I s0) (complete
with computer code).

One of the PRAGMATIC projects looked for new examples of monomial ideals
that failed to have the persistence property. In particular, Bela, Favacchio, and Tran
[13] leveraged the examples of Kaiser, Stehlík, and Škrekovski [123] to build new
monomial ideals corresponding to hypergraphs that failed to have this property.



Part II
Regularity of Powers of Ideals



Chapter 4
Regularity of Powers of Ideals and the
Combinatorial Framework

Castelnuovo-Mumford regularity (or simply regularity) is an important invariant in
commutative algebra and algebraic geometry. Computing or finding bounds for the
regularity is a difficult problem. In the next three chapters, we shall address the
regularity of ordinary and symbolic powers of squarefree monomial ideals.

Our interest in squarefree monomial ideals comes from their strong connections
to topology and combinatorics via the construction of Stanley-Reisner ideals
and edge ideals. In recent years advances in computer technology and speed
of computation have drawn significant attention toward problems and questions
involving this class of ideals.

The collection of problems and questions presented in these three chapters
originates from a celebrated result proved independently by Cutkosky, Herzog and
Trung [48] and Kodiyalam [127] (see also Trung and Wang [162] for the module
case and Bagheri, Chardin, and Hà,[6] and Whieldon [170] for the multigraded
case), which states that for a homogeneous ideal I in a standard graded algebra R

over a Noetherian commutative ring, the regularity of Iq is asymptotically a linear
function. The problem of determining this linear function and the smallest value of
q starting from which reg Iq becomes linear remains wide open and has evolved
into a highly active research area in the last few decades.

We shall discuss this problem primarily for the class of squarefree monomial
ideals. Our focus will be on studies of the asymptotic linear function reg Iq

for a squarefree monomial ideal I via combinatorial data and structures of the
corresponding simplicial complex and/or hypergraph.

4.1 Regularity of Powers of Ideals: The General Question

The main object of our discussion in this part of the book is the Castelnuovo-
Mumford regularity. This notion can be defined in various ways. We shall first give
the definition for modules over polynomial rings as this situation is our focus. A
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more general definition in terms of local cohomology will also be given for the
more advanced interested reader. The motivating theorem and general question are
given at the end of the section.

Definition 4.1 Let R be a standard graded polynomial ring over a field and let m
be its maximal homogeneous ideal. Let M be a finitely generated graded R-module
and let

0 →
⊕

j∈Z
R(−j)βp,j (M) → · · · →

⊕

j∈Z
R(−j)β0,j (M) → M → 0

be its minimal free resolution. Then the regularity of M is given by

reg M = max{j − i | βi,j (M) �= 0}.

Remark 4.2 It is clear from the definition that the regularity of M gives an upper
bound for the generating degrees of M .

Example 4.3 Consider

I = 〈x2y − 2yz2 + 3z3, 2xw − 3yw, yw4 − y2z3 − 2x5〉 ⊆ R = Q[x, y, z,w].
Then I has the following minimal free resolution:

0 −→ R(−10) −→ R(−5) ⊕ R(−7) ⊕ R(−8) −→ R(−2) ⊕ R(−3) ⊕ R(−5) −→ I −→ 0.

Thus, reg I = 8.

If R is a general standard graded algebra over a ring, then the minimal free
resolution of an R-module M may not be finite. In this case, the regularity can still
be defined via local cohomology. See, for example, Chardin [35], and Eisenbud and
Goto [64] for the equivalence between the two definitions when R is a polynomial
ring over a field.

Definition 4.4 Let R be a standard graded algebra over a Noetherian commutative
ring with identity and let m be its maximal homogeneous ideal. Let M be a finitely
generated graded R-module. For i ≥ 0, let

ai(M) =
{

max
{

l ∈ Z

∣

∣

∣

[

Hi
m(M)

]

l
�= 0
}

if Hi
m(M) �= 0

−∞ otherwise.

The regularity of M is defined to be

reg M = max
i≥0

{ai(M)}.

Note that ai(M) = 0 for i > dim M , so the regularity of M is well-defined.
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Example 4.5 Consider R = K[x1, . . . , xn], a polynomial ring over a field K. Then
Hi

m(R) = 0 for all i < n, and an(R) = −n. Thus, reg R = 0.

This definition of regularity works especially well with short exact sequences.
For instance, the following lemma is well-known (cf. [63, Corollary 20.19]).

Lemma 4.6 Let 0 → M → N → P → 0 be a short exact sequence of graded
R-modules. Then

1. reg N ≤ max{reg M, reg P },
2. reg M ≤ max{reg N, reg P + 1},
3. reg P ≤ max{reg M − 1, reg N},
4. reg M = reg P + 1 if reg N < reg P ,
5. reg P = reg M − 1 if reg N < reg M ,
6. reg P = reg N if reg N > reg M , and
7. reg N = reg M if reg P + 1 < reg M .

The motivation of our discussion is the following celebrated result, which was
first independently proved by Cutkosky, Trung and Herzog [48] and Kodiyalam
[127] (the constant a was determined in Trung and Wang [162]).

Theorem 4.7 ([48, 127, 162]) Let R be a standard graded algebra over a Noethe-
rian commutative ring with identity. Let I ⊆ R be a homogeneous ideal. Then there
exist constants a and b such that

reg Iq = aq + b for all q � 0.

Moreover,

a = min{d(J ) | J is a minimal homogeneous reduction of I }.

Here, J ⊆ I is a reduction of I if I s+1 = J I s for some (and all) s ≥ 0, and d(J )

denotes the maximal generating degree of J .
The following problem remains wide open despite much effort from researchers.

Problem 4.8 Determine b and q0 = min{t ∈ Z | reg Iq = aq + b for all q ≥ t}.
In general, when I is generated in the same degree, the constant b can be related

to a local invariant, namely, the regularity of preimages of germs of schemes via
certain projection maps from the blowup of X = Proj R along I .

For the interested reader, we expanded upon the above comment; we do not refer
to this discussion in future sections. Let I = 〈F0, . . . , Fm〉, where F0, . . . , Fm are
homogeneous elements of degree d in R. Let π : X̃ → X be the blow up of
X = Proj R ⊆ P

n along the subscheme defined by I . Let R = R[I t] =⊕q≥0 Iq tq

be the Rees algebra of I . By letting deg t = (0, 1) and deg Fit = (d, 1), the
Rees algebra R is naturally bi-graded with R = ⊕

p,q∈ZR(p,q), where R(p,q) =
(Iq)p+qd tq . Under this bi-gradation of R, we can define the bi-projective scheme
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ProjR of R as follows (cf. Hà [92]):

ProjR = {p ∈ SpecR
∣

∣ p is a bihomogeneous ideal and R++ �⊆ p},

where R++ = ⊕

p,q≥1 R(p,q). It can be seen that ProjR ⊆ P
n × P

m and X̃ �
ProjR.

Let φ : ProjR → P
m denote the natural projection from ProjR onto its second

coordinate, and let X = im(φ). Note that φ is the morphism given by the divisor
D = dE0 − E, where E is the exceptional divisor of π and E0 is the pullback of
a general hyperplane in X. For a point ℘ ∈ X, let X̃℘ = X̃ ×X SpecOX,℘ be the
preimage of φ over the affine scheme SpecOX,℘ .

Let S denote the homogeneous coordinate ring of X ⊆ P
m. For a homogeneous

prime ℘ ⊆ S (i.e., a point in X), let R℘ = R ⊗S S℘ be the localization of R
at ℘. The homogeneous localization of R at ℘, denoted by R(℘), is defined to
be the collection of elements in R℘ of degree 0 in terms of powers of t . Then
X̃℘ = ProjR(℘). We define the regularity of X̃℘ , denoted by reg X̃℘ , to be that of
its homogeneous coordinate ring R(℘), and let reg φ = max{reg X̃℘ | ℘ ∈ X}.

The following result follows from a series of work of Chardin [36], Eisendbud
and Harris [65], and Hà [92]. Partial results on the stability index q0 were obtained
by Eisenbud and Ulrich [66], when I is m-primary, and by Chardin [35] and Bisui,
Hà, and Thomas [18], when I is equi-generated.

Theorem 4.9 Let R be a standard graded algebra over a Noetherian commutative
ring with identity. Let I ⊆ R be a homogeneous ideal generated in degree d . For
q � 0, we have

reg Iq = qd + reg φ.

The invariant reg φ, in practice, is difficult to compute. Even when I is generated
by “enough” (i.e., more than dim R) general linear forms, it is still an open problem
to compute reg φ.

In the next three chapters, we shall see a different approach to computing reg φ

(or equivalently, the free constant b) when I is a squarefree monomial ideal.

4.2 Squarefree Monomial Ideals and Combinatorial
Framework

Our aim in this part of the book is to study a restricted version of Problem 4.8, which
is applied to the class of squarefree monomial ideals. For this purpose, we shall now
fix some notation. From now on, K will denote an infinite field, R = K[x1, . . . , xn]
will be a polynomial ring over K, and m will denote the maximal homogeneous
ideal in R. For obvious reasons, we shall identify the variables x1, . . . , xn with
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the vertices of simplicial complexes and hypergraphs being discussed. By abusing
notation, we also often identify a subset V of the vertices X = {x1, . . . , xn} with
the squarefree monomial xV =∏x∈V x in the polynomial ring R.

The combinatorial framework we shall use is the construction of Stanley-Reisner
ideals and edge ideals corresponding to simplicial complexes and hypergraphs. The
notion of edge ideals of hypergraphs is the generalization of that of edge ideals of
graphs defined in Chap. 2.

4.2.1 Simplicial Complexes

A simplicial complex Δ over the vertex set X = {x1, . . . , xn} is a collection of
subsets of X such that if F ∈ Δ and G ⊆ F , then G ∈ Δ. Elements of Δ are
called faces. Maximal faces (with respect to inclusion) are called facets. For F ∈ Δ,
the dimension of F is defined to be dim F = |F | − 1. The dimension of Δ is
dim Δ = max{dim F | F ∈ Δ}. The complex is called pure if all of its facets are of
the same dimension. A graph can be viewed as a 1-dimensional simplicial complex.

Let Δ be a simplicial complex, and let Y ⊆ X be a subset of its vertices. The
induced subcomplex of Δ on Y , denoted by Δ[Y ], is the simplicial complex with
vertex set Y and faces {F ∈ Δ | F ⊆ Y }.
Definition 4.10 Let Δ be a simplicial complex over the vertex set X, and let σ ∈
Δ.

1. The deletion of σ in Δ, denoted by delΔ(σ), is the simplicial complex obtained
by removing σ and all faces containing σ from Δ.

2. The link of σ in Δ, denoted by linkΔ(σ), is the simplicial complex whose faces
are

{F ∈ Δ | F ∩ σ = ∅, σ ∪ F ∈ Δ}.

Definition 4.11 A simplicial complex Δ is recursively defined to be vertex decom-
posable if either

1. Δ is a simplex (or the empty simplicial complex); or
2. there is a vertex v in Δ such that both linkΔ(v) and delΔ(v) are vertex

decomposable, and all facets of delΔ(v) are facets of Δ.

A vertex satisfying condition (2) is called a shedding vertex, and the recursive choice
of shedding vertices are called a shedding order of Δ.

Definition 4.12 A simplicial complex Δ is said to be shellable if there exists
a linear order of its facets F1, F2, . . . , Ft such that for all k = 2, . . . , t , the

subcomplex
(

⋃k−1
i=1 Fi

)

⋂

Fk is pure and of dimension (dim Fk − 1). Here F

represents the simplex over the vertices of F .
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Fig. 4.1 A vertex
decomposable simplicial
complex

e

d c

a

b

It is a celebrated fact that pure shellable complexes give rise to Cohen-Macaulay
Stanley-Reisner rings. For more details on Cohen-Macaulay rings and modules,
we refer the reader to Bruns and Herzog [25]. The notion of Stanley-Reisner rings
will be discussed later in the section. Note also that a ring or module is sequentially
Cohen-Macaulay if it has a filtration in which the factors are Cohen-Macaulay and
their dimensions are increasing. This property corresponds to (nonpure) shellability
in general.

Vertex decomposability can be thought of as a combinatorial criterion for
shellability and sequentially Cohen-Macaulayness. In particular, for a simplicial
complex Δ,

Δ vertex decomposable ⇒ Δ shellable ⇒ Δ sequentially Cohen-Macaulay.

Example 4.13 The simplicial complex Δ in Fig. 4.1 is a nonpure simplicial complex
of dimension 2. It has 3 facets; the facet {a, b, c} is of dimension 2, the facet {c, d}
is of dimension 1, and the facet {e} is of dimension 0. The complex Δ is vertex
decomposable with {e, d} as a shedding order.

4.2.2 Hypergraphs

Hypergraphs are a generalization of graphs that where introduced in Chap. 2. We
now introduce this combinatorial object; note that some of graph theoretic terms
introduced in Chap. 2 have a hypergraph analog.

A hypergraph H = (X,E ) over the vertex set X = {x1, . . . , xn} consists of X

and a collection E of nonempty subsets of X; these subsets are called the edges of
H . A hypergraph H is simple if there is no nontrivial containment between any pair
of its edges. Simple hypergraphs are also referred to as clutters or Sperner systems.
All hypergraphs we consider will be simple.

When working with a hypergraph H , we shall use X(H) and E (H) to denote
its vertex and edge sets, respectively. We shall assume that hypergraphs under
consideration have no isolated vertices, those are vertices that do not belong to any
edge. An edge {v} consisting of a single vertex is often referred to as an isolated
loop (this is not to be confused with an isolated vertex).
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Let Y ⊆ X be a subset of the vertices in H . The induced subhypergraph of H on
Y , denoted by H [Y ], is the hypergraph with vertex set Y and edge set {E ∈ E | E ⊆
Y }. In Definition 2.23 we introduced a matching in a graph; we now extend this
definition to the hypergraph context.

Definition 4.14 Let H be a simple hypergraph.

1. A collection C of edges in H is called a matching if the edges in C are pairwise
disjoint. The maximum size of a matching in H is called its matching number.

2. A collection C of edges in H is called an induced matching if C is a matching,
and C consists of all edges of the induced subhypergraph H [∪E∈CE] of H .
The maximum size of an induced matching in H is called its induced matching
number.

Example 4.15 Figure 4.1 can be viewed as a hypergraph over the vertex set V =
{a, b, c, d, e} with edges {a, b, c}, {c, d} and {e}. The collection {{a, b, c}, {e}}
forms an induced matching in this hypergraph.

Note that a graph, as introduced in Chap. 2, is a hypergraph in which all edges
are of cardinality 2. We shall also need the following special family of graphs.

Definition 4.16 Let G be a simple graph on n vertices.

1. G is called chordal if it has no induced cycles of length ≥ 4.
2. G is called very well-covered if it has no isolated vertices and its minimal vertex

covers all have cardinality
n

2
.

A hypergraph H is d-uniform if all its edges have cardinality d . For an edge E

in H , let

N(E) = {x ∈ X | there exists F ⊆ E such that F ∪ {x} ∈ E }

be the set of neighbors of E, and let N[E] = N(E) ∪ E.

Definition 4.17 Let H = (X,E ) be a simple hypergraph and let E be an edge in
H .

1. Define H \ E to be the hypergraph obtained by deleting E from the edge set of
H . This is often referred to as the deletion of E from H .

2. Define HE to be the contraction of H to the vertex set X \ N[E] (i.e., edges of
HE are minimal nonempty sets of the form F ∩ (X \ N[E]), where F ∈ E ).

Definition 4.18 Let H = (X,E ) be a simple hypergraph.

1. A collection of vertices V in H is called an independent set if there is no edge
E ∈ E such that E ⊆ V .

2. The independence complex of H , denoted by Δ(H), is the simplicial complex
whose faces are independent sets in H .
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Fig. 4.2 A simple graph
whose independence complex
is in Fig. 4.1 a

d b

e c

Example 4.19 The simplicial complex Δ in Fig. 4.1 is the independence complex
of the graph in Fig. 4.2.

Remark 4.20 We call a hypergraph H vertex decomposable (shellable, sequentially
Cohen-Macaulay) if its independence complex Δ(H) is vertex decomposable
(shellable, sequentially Cohen-Macaulay).

4.2.3 Stanley-Reisner Ideals and Edge Ideals

The Stanley-Reisner ideal and edge ideal constructions are well-studied correspon-
dences between commutative algebra and combinatorics. Those constructions arise
by identifying minimal generators of a squarefree monomial ideal with the minimal
nonfaces of a simplicial complex or the edges of a simple hypergraph.

Stanley-Reisner ideals were developed in the 1970s and the early 1980s (cf.
[155]) and have led to many important homological results (cf. books of Bruns and
Herzog [25] and Peeva [146]).

Definition 4.21 Let Δ be a simplicial complex on X. The Stanley-Reisner ideal of
Δ is defined to be

IΔ = 〈xF | F ⊆ X is not a face of Δ
〉

.

Example 4.22 Let Δ be the simplicial complex in Fig. 4.1, and we set R =
K[a, b, c, d, e]. Then the minimal nonfaces of Δ are {a, d}, {a, e}, {b, d}, {b, e},
{c, e} and {d, e}. Thus,

IΔ = 〈ad, ae, bd, be, ce, de〉.

Example 4.23 The simplicial complex Δ in Fig. 4.3 represents a minimal triangu-
lation of the real projective plane. Its Stanley-Reisner ideal is

IΔ = 〈abc, abe, acf, ade, adf, bcd, bdf, bef, cde, cef〉.

The edge ideal construction for hypergraphs (first studied by Hà and Van
Tuyl [94]) generalizes that of graphs (already presented in Definition 2.10). This
construction is similar to that of facet ideals of Faridi [71].
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Fig. 4.3 A minimal
triangulation of the real
projective plane
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Definition 4.24 Let H be a simple hypergraph on X. The edge ideal of H is defined
to be

I (H) = 〈xE | E ⊆ X is an edge in H
〉

.

The notions of a Stanley-Reisner ideal and an edge ideal give the following
one-to-one correspondences that allow us to pass back and forth from squarefree
monomial ideals to simplicial complexes and simple hypergraphs.

{

simplicial complexes
over X

}

←→
{

squarefree monomial
ideals in R

}

←→
{

simple hypergraphs
over X

}

.

In fact, every edge ideal is a Stanley-Reisner ideal and vice-versa via the notion
of the independence complex. The following lemma follows directly from the
definition of independence complexes and the construction of Stanley-Reisner and
edge ideals.

Lemma 4.25 Let H be a simple hypergraph and let Δ = Δ(H) be its independence
complex. Then

IΔ = I (H).

Example 4.26 The edge ideal of the graph G in Fig. 4.2 is the same as the Stanley-
Reisner ideal of its independence complex, the simplicial complex in Fig. 4.1.

Remark 4.27 For simplicity, if I = IΔ, then we sometimes write reg Δ for reg I ,
and if I = I (H), then we write reg H for reg I .

For a monomial ideal in general one can pass to a squarefree monomial ideal via
the polarization and still keep many important properties and invariants. We shall
briefly recall the notion of polarization; see Herzog and Hibi [106] for more details.

Definition 4.28 Let I ⊆ R = K[x1, . . . , xn] be a monomial ideal. For each i =
1, . . . , n let ai be the maximum power of xi appearing in the monomial generators
of I . The polarization of I , denoted by I pol, is constructed as follows.
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• Let Rpol = K[x11, . . . , x1a1, . . . , xn1, . . . , xnan].
• The ideal I pol is generated by monomials in Rpol that are obtained from genera-

tors of I under the following substitution, for each (γ1, . . . , γn) ≤ (a1, . . . , an),

x
γ1
1 . . . x

γn
n −→ x11 . . . x1γ1 . . . xn1 . . . xnγn.

Note, for example, that reg R/I = reg Rpol/I pol.

4.3 Hochster’s and Takayama’s Formulas

Hochster’s and Takayama’s formulas allow us to relate (multi)graded Betti numbers
of a monomial ideal to the dimension of reduced homology groups of simplicial
complexes. Hochster’s formula deals specifically with squarefree monomial ideals,
which are reflected in the next two lemmas, while Takayama’s formula works for an
arbitrary monomial ideal and is given later on.

The polynomial ring R = K[x1, . . . , xn] has a natural Nn-graded structure,
and for any monomial ideal I ⊂ R, the quotient ring R/I inherits this N

n-
graded structure from that of R. Therefore, the torsion TorRi (I,K) and the local
cohomology module Hi

m(R/I) has a Z
n-graded structure. Let [1, n] denote the set

{1, . . . , n}. For a = (a1, . . . , an) ∈ Z
n, set xa = x

a1
1 · · · xan

n . For a monomial m in
R, by abusing notation, we view degree m component of a Z

n-graded R-module as
its degree supp m component. We shall introduce Hochster’s formula following, for
example, [106, Theorem 8.1.1].

Lemma 4.29 (Hochster’s Formula) Let Δ be a simplicial complex on the vertex
set X = {x1, . . . , xn} and let m be a monomial of R. Then,

dimK TorRi (IΔ,K)m =
{

dimK
˜H deg(m)−i−2(Δ[supp m];K) if m is squarefree

0 otherwise.

In particular,

βij (IΔ) =
∑

deg(m) = j,

m is squarefree

dimK
˜Hj−i−2(Δ[supp m];K) for all i, j ≥ 0.

Here, Δ[supp m] is the induced subcomplex of Δ on the support of m.

Proof We shall outline the proof of Hochster’s formula following that given by
Herzog and Hibi [106, Theorem 8.1.1].

1. Let K be the Koszul complex of IΔ with respect to the variables x =
{x1, . . . , xn}, let Ki be the i-th module, and let Hi(K ) be the i-th homology
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group of K . Since K is a complex of Zn-graded modules, Hi(K ) is also a
Z

n-graded K-vector space. Thus, for a monomial m in R, we have

TorRi (IΔ,K)m = Hi(K )m.

2. For F = {j0 < · · · < ji} ⊆ [1, n], set eF = ej0 ∧ · · · ∧ eji . The elements
eF ’s with |F | = i form a basis for the i-th free module in the Koszul complex
of R with respect to x. The Z

n-degree of eF is ε(F ) ∈ Z
n, where ε(F ) is the

(0,1)-vector with support F .
3. A K-basis for (Ki)m is given by

xbeF , where b + ε(F ) = m and supp b �∈ Δ.

4. Define the simplicial complex

Δm =
{

F ⊆ [1, n] ∣∣ F ⊆ supp m, supp
m

xε(F )
�∈ Δ

}

.

Let ˜C (Δm)[−1] be the oriented augmented chain complex of Δm shifted by −1
in homological degree. Then, we have an isomorphism of complexes

˜C (Δm)[−1] −→ Km

obtained by F = [j0, . . . , ji−2] �→ m
xε(F )

eF . This, in turn, gives

Hi(K )m � Hi( ˜C (Δm)[−1]).

5. If m is not squarefree, then there exists j such that xj appears with power greater
than 1 in m. Define m(r) = mxr

j for r ∈ N. It is easy to see that Δm = Δm(r)

for all r ∈ N. Moreover, for r � 0, Hi(K )m(r) = 0. Thus,

Hi(K )m � Hi( ˜C (Δm)[−1]) = Hi( ˜C (Δm(r))[−1]) = Hi(K )m(r) = 0.

6. Suppose that m is squarefree. It can be seen that F ⊆ Δm if and only if F ⊆
supp m and supp m \ F �∈ Δ[supp m]. That is, Δm = Δ[supp m]∨ where (−)∨
denotes the Alexander dual of a simplicial complex. Hence, we have

Hi( ˜C (Δm)[−1]) � ˜Hi−1(Δ[supp m]∨;K) � ˜H deg m−i−2(Δ[supp m];K)

where the second isomorphism is a standard fact about Alexander duality.
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Lemma 4.30 For a simplicial complex Δ, the following are equivalent:

1. reg R/IΔ ≥ d .
2. H̃d−1(Δ[S],K) �= 0, where Δ[S] denotes the induced subcomplex on some

subset S of vertices.
3. H̃d−1(linkΔ σ,K) �= 0 for some face σ of Δ.

Proof The equivalence of (1) and (2) follows directly from Definition 4.1, together
with Hochster’s formula in Lemma 4.29. The equivalence of (1) and (3) follows
directly from the local cohomology characterization of regularity, together with the
fact that Hi

m(R/IΔ,K)−σ � H̃ i−|σ |−1(linkΔ σ,K) (see Miller and Sturmfels book
[137, Chapter 13.2]).

We will also make use of a variation of Hochster’s formula following [137,
Theorem 1.34]. This variation of Hochster’s formula is given via upper-Koszul
simplicial complexes associated to monomial ideals.

Definition 4.31 Let I ⊆ R be a monomial ideal and let α = (α1, . . . , αn) ∈ N
n be

a N
n-graded degree. The upper-Koszul simplicial complex associated to I at degree

α, denoted by Kα(I), is the simplicial complex over X = {x1, . . . , xn} whose faces
are:

⎧

⎪

⎨

⎪

⎩

W ⊆ X

∣

∣

∣

∣

∣

∣

∣

xα

∏

u∈W

u
∈ I

⎫

⎪

⎬

⎪

⎭

.

Theorem 4.32 ([137, Theorem 1.34]) Let I ⊆ R be a monomial ideal. Then its
N

n-graded Betti numbers are given as follows:

βi,α(I) = dimK
˜Hi−1(K

α(I);K) for i ≥ 0 and α ∈ N
n. (4.1)

Takayama’s formula [160, Theorem 1] describes the the dimension of the Z
n-

graded component Hi
m(R/I)a, for a ∈ Z

n, in terms of a simplicial complex Δa(I).
We shall recall the construction of Δa(I), as given by Minh and Trung [138], which
is simpler than the original construction of [160].

For a = (a1, . . . , an) ∈ Z
n, set Ga := {j ∈ [1, n] ∣∣ aj < 0}. For every subset

F ⊆ [1, n], let RF = R[x−1
j | j ∈ F ]. Define

Δa(I) = {F \ Ga| Ga ⊆ F, xa �∈ IRF }.

We call Δa(I) a degree complex of I .

Lemma 4.33 (Takayama’s Formula) For any a ∈ Z
n, we have

dimK Hi
m(R/I)a = dimK

˜Hi−|Ga|−1(Δa(I),K).
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The original formula in [160, Theorem 1] is slightly different. It contains
additional conditions on a for Hi

m(R/I)a = 0. However, the proof in [160] shows
that we may drop these conditions, which is more convenient for our investigation.

From Takayama’s formula we immediately obtain the following characteriza-
tions of depth and regularity of monomial ideals in terms of the degree complexes.

Lemma 4.34 Let I ⊆ R be a monomial ideal. Then

reg R/I = max{|a| + |Ga| + i
∣

∣ a ∈ Z
n, i ≥ 0, ˜Hi−1(Δa(I),K) �= 0}.



Chapter 5
Problems, Questions, and Inductive
Techniques

In this chapter, we present a number of open problems and questions for edge ideals
of graphs. These problems and questions fall under the umbrella of Problem 4.8. We
shall also discuss inductive techniques that have been applied in the literature.

5.1 Regularity of Powers of Edge Ideals

When restricted to the case that I = I (G) is the edge ideal of a simple graph G, it
is known by Theorem 4.7 that for q � 0,

reg Iq = 2q + b

and Problem 4.8 is to determine the constants b and q0 = min{t | reg Iq = 2q +
b for all q ≥ t}. This has been accomplished for a number of special classes of
graphs, namely, for forests, cycles, unicyclic graphs, and very well-covered graphs,
and is due to the work of Beyarslan, Hà, and Trung [15], Alilooee, Beyarslan, and
Selvaraja [3], Moghimian, Seyed Fakhari, and Yassemi [139], and Norouzi, Seyed
Fakhari, and Yassemi [144].

Recall from Definition 4.14 that an induced matching C of a graph G is a
matching C such that induced subgraph of G on the vertices of C is the matching C.
The induced matching number, denoted ν(G), is the size of the maximum induced
matching.

Theorem 5.1 ([15, Theorem 4.7]) Let G be a forest, and let I = I (G) be its edge
ideal. Then for all q ≥ 1, we have

reg Iq = 2q + ν(G) − 1.
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Theorem 5.2 ([15, Theorem 5.2]) Let Cn denote the n-cycle, and let I = I (Cn)

be its edge ideal. Let ν = �n
3  be the induced matching number of Cn. Then

reg I =
{

ν + 1 if n ≡ 0, 1 (mod 3)

ν + 2 if n ≡ 2 (mod 3)

and for any q ≥ 2, we have

reg Iq = 2q + ν − 1.

Theorem 5.3 ([3, Theorem 1.2], [139, Proposition 1.1]) Let G be a unicyclic
graph (i.e., a graph having exactly one cycle) that is not a cycle, and let I = I (G)

be its edge ideal. Then for all q ≥ 1, we have

reg Iq = 2q + reg I − 2.

Theorem 5.4 ([120, Theorem 5.3], [144, Theorem 3.6]) Let G be a very well-
covered graph, and let I = I (G) be its edge ideal. Then for all q ≥ 1, we have

reg Iq = 2q + ν(G) − 1.

These theorems give rise to the following problem.

Problem 5.5 Characterize graphs G for which the edge ideals I = I (G) satisfy

1. reg Iq = 2q + ν(G) − 1 for all q � 0.

2. reg Iq = 2q + reg I − 2 for all q � 0.

The simplest situation for an edge ideal is when its powers have linear resolu-
tions. It is a nice result (see Fröberg [78] and Wegner [169]) that the edge ideal of a
graph G has a linear resolution if and only if Gc is chordal. It also follows from work
of Herzog, Hibi, and Zheng [110] that if I (G) has a linear resolution, then so does
I (G)q for all q ≥ 1. It is, thus, of interest to characterize graphs whose (sufficiently
large) powers have linear resolutions. It is known (see Nevo and Peeva [143]) that if
a power of I (G) has a linear resolution, then Gc has no induced 4-cycles.

Problem 5.6 (Francisco-Hà-Van Tuyl and Nevo-Peeva) Suppose that ν(G) = 1,
i.e., Gc has no induced 4-cycle and let I = I (G).

1. Prove (or disprove) that reg Iq = 2q for all q � 0.
2. Prove (or disprove) that reg Iq+1 = reg Iq + 2 for all q ≥ reg I − 1.

A cricket graph is obtained by attaching exactly two leaves at the same vertex of
a triangle (a C3). A diamond graph is obtained by connecting exactly one pair of
opposite vertices in a C4. A graph G is called cricket-free or diamond-free if G has
no induced subgraph that is a cricket or a diamond, respectively. Problem 5.6 has
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an affirmative answer (for all q ≥ 2) under an additional condition that G is also
cricket-free or diamond-free Banerjee [7] and Erey [68].

Computational experiments also suggest that the constant q0, i.e., the first place
where reg Iq becomes a linear function, cannot be too big.

Question 5.7 Is it true that q0 ≤ reg I (G)?

It is often difficult to get the exact value for the asymptotic linear function reg Iq .
Linear bounds are also of interest. The following general lower bound of Beyarslan,
Hà, and Trung [15] was inspired by a result of Katzman [125], who proved the
bound when q = 1 (i.e., for the edge ideal itself).

Theorem 5.8 ([15, Theorem 4.5]) Let G be any graph, and let I = I (G) be its
edge ideal. Then for all q ≥ 1, we have

reg Iq ≥ 2q + ν(G) − 1.

A lower bound would be especially interesting when coupling with an upper
bound. Unfortunately, there has not been any satisfactory general upper bound for
reg Iq . The following conjecture seems plausible.

Conjecture 5.9 (Banerjee, Beyarslan and Hà) Let G be any graph, and let I =
I (G) be its edge ideal. Then for all q ≥ 1, we have

reg Iq ≤ 2q + reg I − 2.

For bipartite graphs, a slightly weaker upper bound was obtained by Jayanthan,
Narayanan and Selvaraja [122]. Recall that co-chord(G), the co-chordal number of
G, denotes the least number of co-chordal subgraphs (graphs whose complements
are chordal) of G whose union is G. It was proved by Woodroofe [171] that

reg I (G) ≤ co-chord(G) + 1.

An upper bound for reg Iq for bipartite graphs is stated as follows.

Theorem 5.10 ([122, Theorem 1.1]) Let G be a bipartite graph, and let I =
I (G) be its edge ideal. Then for all q ≥ 1, we have

reg Iq ≤ 2q + co-chord(G) − 1.

Inspired by Theorem 5.10, one could might want to either attack Conjecture 5.9
for bipartite graphs or get a similar bound as that of Theorem 5.10 for all graphs.
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5.2 Regularity of Symbolic Powers of Edge Ideals

Symbolic powers of squarefree monomial ideals (particularly, edge ideals of graphs)
are quite easy to describe. Let G be a simple graph, and let I = I (G) be its edge
ideal. Then by Lemma 2.13 the ideal I has the following primary decomposition:

I =
⋂

W is a minimal vertex cover

〈x | x ∈ W 〉.

In this case, the symbolic powers of I are given in the following way: for all q ≥ 1,

I (q) =
⋂

W is a minimal vertex cover

〈x | x ∈ W 〉q .

The study of the regularity of symbolic powers is much more subtle than that of
ordinary powers. It is known by Herzog, Hoa, and Trung [109] that the regularity
of symbolic powers of an edge ideal (or a monomial ideal in general) is bounded
above by a linear function. However, this linear function is often too big to give
exact values. The following natural question remains open.

Question 5.11 Let G be a simple graph, and let I = I (G) be its edge ideal. Is
reg I (q) asymptotically a linear function, i.e., are there constants a and b such that

reg I (q) = aq + b for all q � 0?

A bolder statement than Question 5.11 to investigate is the following question.

Question 5.12 (N.C Minh) Let G be a graph, and let I = I (G) be its edge ideal.
Is reg I (q) = reg Iq for all q � 0?

This question is certainly not true for squarefree monomial ideals in general. A
good place to start investigating Question 5.12 is the following problem.

Question 5.13 Let G be a co-chordal graph (i.e., Gc is chordal). Prove (or disprove)
that for all q � 0, we have

reg I (q) = 2q.

As in the case for ordinary powers, general lower and upper bounds for reg I (q)

are also of interest. To this end, we ask if a similar bound to that of Theorem 5.8
holds also for symbolic powers.

Question 5.14 Let G be a graph, and let I = I (G) be its edge ideal. Is it true that,
for all q ≥ 1,

reg I (q) ≥ 2q + ν(G) − 1?

This question also leads to the following problem.
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Problem 5.15

1. Find classes of graphs for which reg I (q) = 2q + ν(G) − 1 for all q ≥ 1.
2. Find a good linear upper bound for reg I (q) for q � 0.

The first difficulty when working with Questions 5.11–5.15 is how to understand
symbolic powers of edge ideals. One might try Questions 5.11–5.15 for special
classes of graphs for which the symbolic powers of their edge ideals are well
described. The class of perfect graphs is a good place to start due to the following
result of Sullivant [157]. For a graph G, let C2(G) denote the set of cliques of size
at least 2 in G.

Theorem 5.16 ([157, Theorem 3.10]) A graph G is perfect if and only if for all
q ≥ 1, we have

I (G)(q) =
〈

l
∏

i=1

xVi

∣

∣

∣

∣

∣

G[Vi] ∈ C2(G) with
l
∑

i=1

(|Vi| − 1) = q

〉

.

One can also consider small symbolic powers of edge ideals. For instance, the
second symbolic power of the edge ideal of a graph is quite well understood.

Theorem 5.17 ([157, Corollary 3.12]) Let G be any graph, and let I = I (G) be
its edge ideal. Then I (2) is generated by cubics of the form xixjxk, where {xi, xj , xk}
is a triangle in G, and quartics of the form xixjxkxl , where {xi, xj } and {xk, xl} are
edges in G.

5.3 Inductive Techniques

The backbone of most of the obtained results on the regularity of powers of edge
ideals is mathematical induction. The underlying idea is to relate the regularity
of powers of a squarefree monomial ideal, corresponding to a simplicial complex
and/or hypergraph, to that of smaller ideals, corresponding to subcomplexes and/or
subhypergraphs. In this section we recall a number of inductive results that played
the key rôle in most of these studies.

We start with a few crude bounds for the regularity of hypergraphs and simplicial
complexes. These bounds follow immediately from Lemma 4.30.

Lemma 5.18

1. Let H be a simple hypergraph. Then reg H ≥ reg H ′ for any induced subhyper-
graph H ′ of H .

2. Let Δ be a simplicial complex. Then reg Δ ≥ reg linkΔ(σ) for any face σ of Δ.

Next, we recall a number of bounds for the regularity of hypergraphs and
simplicial complexes that result from familiar short exact sequences. In particular,
for homogeneous ideals I, J ⊆ R and a homogeneous element h ∈ R, the following
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short exact sequences are standard in commutative algebra.

0 −→ R

I : h
(−d)

×h−→ R

I
−→ R

I + h
−→ 0, and (5.1)

0 −→ R

I ∩ J
−→ R

I
⊕ R

J
−→ R

I + J
−→ 0. (5.2)

The long exact sequence of local cohomology modules associated to (5.1) gives
us a simple bound:

reg I ≤ max{reg(I : h) + d, reg(I, h)}. (5.3)

Remark 5.19 If I is a monomial ideal and h is an indeterminate of R appearing in
the generators of I , then it was shown by Dao, Huneke, and Schweig [49, Lemma
2.10] that, in fact, reg I is always equal to either reg(I : h) + 1 or reg(I, h).

In practice, induction based on the combinatorial structures of hypergraphs and
simplicial complexes is often performed by successively deleting a vertex or an edge
(or a face). In these situations, h is either a variable or a product of variables on an
edge (or a face).

Remark 5.20 Let I ⊆ R be a squarefree monomial ideal.

1. Suppose that I = IΔ for a simplicial complex Δ. Let h = xσ , where σ ∈ Δ is of
dimension d − 1. Then I : 〈h〉 = IlinkΔ(σ) and I + 〈h〉 = IdelΔ(σ) + 〈h〉.

2. Suppose that I = I (H) is the edge ideal of a simple hypergraph H . For a subset
V of the vertices, |V | = d , let H : V and H+V represent the simple hypergraphs
corresponding to the squarefree monomial ideals I (H) : 〈xV 〉 and I (H)+〈xV 〉,
respectively.

As a consequence of (5.3) and the above remark we have the following inductive
bounds.

Theorem 5.21

1. Let Δ be a simplicial complex, and let σ be a face of dimension d − 1 in Δ. Then

reg Δ ≤ max{reg linkΔ(σ) + d, reg delΔ(σ)}.

2. Let H be a simple hypergraph, and let V be a collection of d vertices in H . Then

reg H ≤ max{reg(H : V ) + d, reg(H + V )}.

Now, let E be an edge of a simple hypergraph H . By taking I = I (H \ E) and
J = 〈xE〉 in the short exact sequence (5.2), we have

0 −→ R

〈xE〉 ∩ I (H \ E)
−→ R

〈xE〉 ⊕ R

I(H \ E)
−→ R

I(H)
−→ 0.
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Taking the associated long exact sequence of cohomology modules again, we get

reg H ≤ max{|E|, reg(H \ E), reg
(〈xE〉 ∩ I (H \ E)

)− 1}. (5.4)

Observe that 〈xE〉∩I (H \E) = xE〈y | y ∈ N(E)〉+I (HE), where HE denotes
the contraction of H \N(E) to the vertices X \N[E] (i.e., edges of HE are minimal
nonempty elements of {F ∩(X\N[E]) | F ∈ E (H)}). Moreover, since vertex set of
HE is disjoint from N[E], by taking the tensor product of minimal free resolutions,
we get

reg
(〈xE〉 ∩ I (H \ E)

) = reg(I (HE)) + |E|.

Thus, (5.4) gives the following inductive bound.

Theorem 5.22 Let H be a simple hypergraph, and let E be an edge of cardinality
d in H . Then

reg H ≤ max{d, reg(H \ E), reg(HE) + d − 1}.

Another inductive bound, which does not rely on short exact sequences (5.1) and
(5.2), was established by Kalai and Meshulam [124]. This bound was also extended
to arbitrary (not necessarily squarefree) monomial ideals by Herzog [105].

Theorem 5.23 Let I1, . . . , Is be squarefree monomial ideals in R. Then

reg

(

R
/

s
∑

i=1

Ii

)

≤
s
∑

i=1

reg R/Ii .

If we restrict to edge ideals of hypergraphs, Theorem 5.23 immediately gives us
the following corollary.

Corollary 5.24 Let H and H1, . . . , Hs be simple hypergraphs over the same vertex
set X such that E (H) =⋃s

i=1 E (Hi). Then

reg R/I (H) ≤
s
∑

i=1

reg R/I (Hi).

When working with powers of edge ideals, induction not only goes from a
given hypergraph to subhypergraphs, but also from a bigger power to smaller ones.
Banerjee’s recent work [7] facilitates this inductive process. Banerjee’s technique
has proved to be quite powerful in getting the exact linear form for the regularity of
powers of edge ideals of special classes of graphs. We recall the following definition
and theorems from [7].
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Fig. 5.1 A graph and
even-connected vertices

x5

x4

x3x2

x1

x6

Theorem 5.25 (see [7, Theorem 5.2]) Let G be a graph, and let s be a positive
integer. Denote the set of minimal monomial generators of I (G)s by {m1, . . . ,mk}.
Then

reg I (G)s+1 ≤ max{reg I (G)s , reg
(

I (G)s+1 : 〈ml〉
)+ 2s, 1 ≤ l ≤ k}.

Definition 5.26 Let G = (V ,E) be a graph. Two vertices u and v in G are said
to be even-connected with respect to an s-fold product M = xe1 · · · xes , where
e1, . . . , es are edges in G, if there is a path p0, . . . , p2l+1, for some l ≥ 1, in G such
that the following conditions hold:

1. p0 ≡ u and p2l+1 ≡ v;
2. for all 0 ≤ j ≤ l − 1, {p2j+1, p2j+2} = ei for some i; and
3. for all i,

∣

∣{j | {p2j+1, p2j+2} = ei}
∣

∣ ≤ ∣∣{t | et = ei}
∣

∣.

Theorem 5.27 ([7, Theorems 6.1 and 6.7]) Let G = (V ,E) be a graph with edge
ideal I = I (G), and let s ≥ 1 be an integer. Let M = xe1 · · · xes be a minimal
generator of I s . Then I s+1 : 〈M〉 is minimally generated by monomials of degree 2,
and uv (u and v may be the same) is a minimal generator of I s+1 : 〈M〉 if and only
if either {u, v} ∈ E or u and v are even-connected with respect to M .

Example 5.28 Let G be the graph in Fig. 5.1, and let I = I (G) ⊆ k[x1, . . . , x6].
Let e = {x2, x6}. Then x3 and x5 is even-connected with respect to M = xe = x2x6.
The path p0, . . . , p3 as in Definition 5.26 can be chosen to be x3, x2, x6, x5. In
particular, x3x5 ∈ I 2 : 〈M〉 by Theorem 5.27.



Chapter 6
Examples of the Inductive Techniques

In this chapter, we present detailed proofs of a few stated results to illustrate how
the inductive techniques introduced in the last chapter can be applied to the study of
the regularity of powers of edge ideals.

In the first section, we examine the proof of Theorem 5.8. This theorem gives
a general lower bound for reg I (G)q , q ≥ 1, where G is an arbitrary graph.
Lemma 5.18 shows reg I (G) ≥ reg I (H), for any induced subgraph H of G. The
main idea behind the proof of Theorem 5.8 is to show that a similar statement holds
when we consider the powers I (G)q and I (H)q , and to find an induced subgraph
H which attains the lower bound.

In the second section, we exhibit the proof of Theorem 5.1, which gives the exact
formula for reg I (G)q , q ≥ 1, when G is a forest. By means of the general lower
bound, it remains to prove the upper bound. We apply an interesting non-standard
induction to find this upper bound.

The last section is devoted to the proof of Theorem 5.2, which gives the exact
formula for reg I (G)q , q ≥ 1, when G is a cycle. This proof is an example of how
Banerjee’s induction method works.

6.1 Proof of Theorem 5.8

We start by generalizing the crude bound given in Lemma 5.18, making use of
Theorem 4.32, to get a bound for the graded Betti numbers for any powers of an
edge ideal.

Lemma 6.1 Let G be a graph, and let H be an induced subgraph of G. Then for
any q ≥ 1 and any i, j ≥ 0, we have

βi,j (I (H)q) ≤ βi,j (I (G)q).
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Proof For an N
n-graded degree α = (α1, . . . , αn), let supp(α) = {xi | αi �= 0} be

the support of α. Observe that since H is an induced subgraph of G, if supp(α) ⊆
VH then Kα(I (H)q) = Kα(I (G)q). Thus, it follows from (4.1) that

βi,α(I (H)q) = dimK
˜Hi−1(K

α(I (H)q);K)

= dimK
˜Hi−1(K

α(I (G)q);K) = βi,α(I (G)q).

Hence,

βi,j (I (H)q ) =
∑

α∈Nn, supp(α)⊆VH ,|α|=j

βi,α(I (H)q ) =
∑

α∈Nn, supp(α)⊆VH ,|α|=j

βi,α(I (G)q )

≤
∑

α∈Nn, |α|=j

βi,α(I (G)q) = βi,j (I (G)q ).

Corollary 6.2 Let G be a graph, and let H be an induced subgraph of G. Then, for
all q ≥ 1,

reg I (H)q ≤ reg I (G)q .

We shall also need the following lemma.

Lemma 6.3 Let F1, . . . , Fr be a regular sequence of homogeneous polynomials in
R with deg F1 = · · · = deg Fr = d . Let I = 〈F1, . . . , Fr 〉. Then for all q ≥ 1, we
have

reg Iq = dq + (d − 1)(r − 1).

Proof We use induction on r . The statement is clear for r = 1. Suppose that r > 1.
We proceed by induction on q . The statement is also clear if q = 1 by the Koszul
complex. Thus, we may assume that q ≥ 2.

Let J = (F1, . . . , Fr−1). Consider the following homomorphism

φ : Iq−1(−d) ⊕ J q (Fr ,1)−→ Iq .

Since Iq = (J + (Fr ))
q = J q + FrI

q−1, φ is surjective. Moreover, since Fr is
regular in R/J , the kernel of φ is given by FrJ

q . Thus, we have the following short
exact sequence

0 −→ J q(−d) −→ Iq−1(−d) ⊕ J q (Fr ,1)−→ Iq −→ 0. (6.1)

By the induction hypothesis on r , we have reg(J q(−d)) = reg J q + d = dq +
(d − 1)(r − 1) + 1. Furthermore, by the induction hypothesis on q , we have

reg(Iq−1(−d)) = reg Iq−1 + d = dq + (d − 1)(r − 1).
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Thus,

reg(Iq−1(−d) ⊕ J q) = dq + (d − 1)(r − 1).

Combining with (6.1) and Lemma 4.6, we can conclude that

reg Iq = dq + (d − 1)(r − 1),

and the lemma is proved.

We are now ready to establish the general bound for reg I (G)q stated in Theo-
rem 5.8. For simplicity of notation, let r = ν(G). Suppose that {u1v1, . . . , urvr }
is an induced matching in G. Let H be the induced subgraph of G on the vertices
⋃r

i=1{ui, vi}. Then I (H) = 〈u1v1, . . . , urvr 〉 is a complete intersection. Thus, by
Lemma 6.3, we have

reg I (H)q = 2q + (2 − 1)(r − 1) = 2q + ν(G) − 1.

It now follows from Corollary 6.2 that

reg I (G)q ≥ reg I (H)q ≥ 2q + ν(G) − 1.

6.2 Proof of Theorem 5.1

The heart of the proof of Theorem 5.1 lies in the following lemma which, when
taking H to be the empty graph, gives us the necessary upper bound for the
conclusion of Theorem 5.1 to hold.

Lemma 6.4 Let K be a forest, and let ν(K) be its induced matching number.
Suppose that G and H are induced subgraphs of K such that

E(H) ∪ E(G) = E(K) and E(H) ∩ E(G) = ∅.

Then, for all q ≥ 1, we have

reg(I (H) + I (G)q) ≤ 2q + ν(K) − 1.

Proof We shall use induction on m := q + |V (G)|. If m = 1, then we must have
q = 1 and V (G) = ∅. In this case, E(H) = E(K), I (H) + I (G)q = I (K), and
the desired inequality is

reg I (K) ≤ ν(K) + 1. (6.2)
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This is true and (6.2) is, in fact, an equality, following Zheng [173, Theorem 2.18].
The key steps to prove [173, Theorem 2.18] are summarized as follows:

1. Let x be a leaf vertex of K . By (5.3), we have

reg I (K) ≤ max
{

reg
(

I (K) : 〈x〉)+ 1, reg
(

I (K), x
)}

.

2. Note that I (K) : 〈x〉 corresponds to the edge ideal of K \ NK [x] and (I (K), x)

corresponds to the edge ideal of K \ x.
3. It can be shown that ν(K \ NK [x]) + 1 ≤ ν(K) and ν(K \ x) ≤ ν(K).
4. Equation (6.2) then follows by induction on |V (K)|.

Suppose now that m ≥ 2. If G consists of no edges, then E(H) = E(K) and
we have I (H) + I (G)q = I (K). The assertion again follows from [173, Theorem
2.18].

Assume that E(G) �= ∅. Being a subgraph of K , G is a forest. In particular, G

contains a leaf. Let x be a leaf in G and let y be the unique neighbor of x in G.
By Morey [140, Lemma 2.10], we have I (G)q : 〈xy〉 = I (G)q−1. The ideas of the
proof of [140, Lemma 2.10] are as follows:

1. The containment I (G)q−1 ⊆ I (G)q : 〈xy〉 is straightforward.
2. Suppose that a is a monomial in I (G)q : 〈xy〉. That is, axy = e1 . . . eqh, where

the ei’s correspond to edges in G and h is a monomial.
3. If x does not appear in e1 . . . eq then a ∈ I (G)q−1. Otherwise, say x ∈ ei . Since

x is a leaf vertex and y is the only neighbor of x, we must have ei = xy. In this
case, a = e1 . . . êi . . . eqh is also in I (G)q−1.

Since all ideals being discussed are monomial ideals, this implies that

(I (H) + I (G)q) : 〈xy〉 = (I (H) : 〈xy〉) + (I (G)q : 〈xy〉) = (I (H) : 〈xy〉) + I (G)q−1.

Moreover,

〈xy〉 + I (H) + I (G)q = 〈xy〉 + I (H) + I (G \ x)q = I (H + xy) + I (G \ x)q,

where H + xy denotes the graph H adjoined with the edge {x, y}. Therefore, we
have the following short exact sequence:

0 → (

R
/

(I (H) : 〈xy〉 + I (G)q−1)
)

(−2) → R
/

(I (H) + I (G)q)

→ R/I (H + xy) + I (G \ x)q → 0.

This yields

reg(I (H) + I (G)q) ≤ max{reg(I (H) : 〈xy〉 + I (G)q−1)

+2, reg(I (H + xy) + I (G \ x)q)}. (6.3)
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Let {u1, . . . , up} = NH (x) ∪ NH(y) be all the vertices of H which are adjacent
to either x or y. Let H ′ = H \ {u1, . . . , up}. Then,

I (H) : 〈xy〉 = I (H ′) + 〈u1, . . . , up〉.

Observe that since E(G) ∩ E(H) = ∅, none of the vertices {u1, . . . , up} are in G.
Therefore, we have

reg(I (H) : 〈xy〉 + I (G)q−1) = reg(I (H ′) + 〈u1, . . . , up〉 + I (G)q−1)

= reg(I (H ′) + I (G)q−1).

This, coupled with (6.3), implies that

reg(I (H) + I (G)q) ≤ max{reg(I (H ′) + I (G)q−1)

+2, reg(I (H + xy) + I (G \ x)q)}. (6.4)

Let K ′ := H ′ ∪G. Since E(H)∩E(G) = ∅, we have E(H ′)∩E(G) = ∅. This
implies that K ′ is an induced subgraph of K . Thus, K ′ is a forest, and

ν(K ′) ≤ ν(K).

Now, applying the induction hypothesis to K ′,G and H ′ with power (q − 1), we
have

reg(I (H ′) + I (G)q−1) ≤ 2(q − 1) + ν(K ′) − 1 ≤ 2(q − 1) + ν(K) − 1.

(6.5)

On the other hand, since x is a leaf of G, we have E(H + xy) ∩ E(G \ x) = ∅ and
K = (H + xy)∪ (G \ x). Thus, we can apply the induction hypothesis to K,G \ x

and H + xy to get

reg(I (H + xy) + I (G \ x)q) ≤ 2q + ν(K) − 1. (6.6)

Putting (6.4)–(6.6) together we get the desired inequality

reg(I (H) + I (G)q) ≤ 2q + ν(K) − 1,

and the lemma is proved.

We are now ready to present the proof of Theorem 5.1. Let G be a forest, and
let I = I (G). For any q ≥ 1, by Theorem 5.8 we have reg Iq ≥ 2q + ν(G) − 1.
On the other hand, applying Lemma 6.4 by taking K = G and H = ∅, we get
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reg Iq ≤ 2q + ν(G) − 1. Hence, for all q ≥ 1,

reg Iq = 2q + ν(G) − 1.

6.3 Proof of Theorem 5.2

The proof of Theorem 5.2 makes use of Banerjee’s inductive method. To start we
shall see how Theorem 5.27 applies to our situation, where the given graph is a
cycle.

Lemma 6.5 Let Cn be the n-cycle and assume that its vertices (in order) are
x1, . . . , xn. Let I = I (Cn). Then

x2
n ∈ (Iq+1 : 〈M〉),

where M is a minimal generator of Iq , if and only if n is odd, say n = 2l + 1 for
some 1 ≤ l ≤ q , and

M = (x1x2) · · · (x2l−1x2l)N with N ∈ Iq−l .

In this case we also have xnxj ∈ Iq+1 : 〈M〉 for all j = 1, . . . , n.

Proof Let us start by proving the “if” direction. Suppose that n = 2l + 1 and
M = (x1x2) · · · (x2l−1x2l)N with N ∈ Iq−l for some 1 ≤ l ≤ q . Then

x2
nM = (xnx1)(x2x3) · · · (x2lxn)N ∈ I l+1+q−l = Iq+1.

Thus, x2
n ∈ (Iq+1 : 〈M〉).

We proceed to prove the “only if” direction. Indeed, by Theorem 5.27, if x2
n ∈

(Iq+1 : 〈M〉), then xn must be even-connected to itself with respect to M . Let
xn = p0, p2, . . . , p2l+1 = xn be a shortest even-connected path between xn and
itself.

Consider the case where there exists some 1 ≤ j ≤ 2l such that pj = xn. If j

is odd then xn = p0, . . . , pj = xn is a shorter even-connected path between xn and
itself, a contradiction. If j is even, then xn = pj , . . . , p2l+1 = xn is also a shorter
even-connected path between xn and itself, a contradiction. Thus, we may assume
that xn does not appear in the path p0, . . . , p2l+1 except at its endpoints.

If the path p0, . . . , p2l+1 is not simple, say for 1 ≤ i < j ≤ 2l we have pi = pj

(and we choose such i and j so that j − i is minimal), then pi, . . . , pj is a simple
closed path lying on Cn. This can only occur if this simple path is in fact Cn, which
then violates our assumption about the appearance of xn in the path p0, . . . , p2l+1.
Therefore, xn = p0, . . . , p2l+1 = xn is a simple closed path on Cn. It follows that
xn = p0, . . . , p2l+1 = xn is Cn. This, in particular, implies that n = 2l + 1 is odd,
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and by re-indexing if necessary, we may assume that pi = xi for all i = 1, . . . , n.
Moreover, by the definition of even-connected path, we have that

M = (p1p2) · · · (p2l−1p2l)N = (x1x2) · · · (x2l−1x2l)N,

where N is the product of q − l edges in Cn (whence, N ∈ Iq−l).
The last statement of the theorem follows from Theorem 5.27 and the following

observation: for j odd, p0, . . . , pj is an even-connected path between xn and xj ;
and for j even, pj , . . . , p2l+1 is an even-connected path between xj and xn.

We are now ready to present the proof of Theorem 5.2. Let Cn be a cycle, and
let I = I (Cn). The first statement follows from by work of Jacques [118, Theorem
7.6.28]. In fact, all nonzero graded Betti numbers of I (Cn) were computed in [118,
Theorems 7.6.28]. Specifically, these numbers are, for j < n and 2i ≥ j ,

βi,j (I (Cn)) = n

n − 2(j − l)

(

j − i

2i − j

)(

n − 2(j − i)

j − i

)

,

and

β2m+1,n(I (Cn)) = 1 if n = 3m + 1

β2m+1,n(I (Cn)) = 1 if n = 3m + 2

β2m,n(I (Cn)) = 2 if n = 3m.

We shall prove the second statement of the theorem. In light of Theorem 5.8, it
suffices to show that

reg Iq ≤ 2q + ν − 1.

where ν = ν(G). By applying Theorem 5.25 and using induction, it is enough to
prove that

reg(Iq+1 : 〈M〉) ≤ ν + 1 (6.7)

for any s ≥ 1 and any minimal generator M of Iq .
By Theorem 5.27, Iq+1 : 〈M〉 is generated in degree 2, and its generators are of

the form uv, where either {u, v} is an edge in Cn, or u and v are even-connected with
respect to M . Observe that if x2

n is a generator of Iq+1 : 〈M〉, then by Lemma 6.5,
we get that n is odd and xnxj is a generator of Iq+1 : M for all j = 1, . . . , n. In this
case, in polarizing Iq+1 : 〈M〉, we replace the generator x2

n by xnyn, where yn is a
new variable. Thus, if we denote by J the polarization of Iq+1 : 〈M〉 then J has the
form

J = I (G) + 〈xi1yi1 , . . . , xit yit 〉,
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where G is a graph over the vertices {x1, . . . , xn}, yi1, . . . , yit are new variables,
and x2

i1
, . . . , x2

it
are all non-squarefree minimal generators of Iq+1 : 〈M〉. Note that

polarization does not change the regularity, and we have

reg J = reg(Iq+1 : 〈M〉).

Note also that since Iq+1 : 〈M〉 have all edges of Cn as minimal generators, G has
Cn as a Hamiltonian cycle.

Consider the case that Iq+1 : 〈M〉 indeed has non-squarefree minimal generators
(i.e., t �= 0). For each j = 0, . . . , t , let Hj be the graph whose edge ideal is I (G)+
〈xi1yi1 , . . . , xij yij 〉. Then, H0 = G and J = I (Ht).

By Lemma 6.5 (and following our observation above), {xij , xl} is an edge in G

for any j = 1, . . . , t and any l = 1, . . . , n. This implies that the induced subgraph
Hj \ NHj [xij ] of Hj consists of isolated vertices {yi1, . . . , yij−1}. It follows that
reg(Hj \ NHj [xij ]) = 0, and by Remark 5.19, we have

reg Hj = reg(Hj \ xij ).

However, yij is an isolated vertex in Hj \ xij and Hj \ {xij , yij } is an induced
subgraph of Hj \ yij = Hj−1, and so we get

reg Hj = reg(Hj \ xij ) = reg(Hj \ {xij , yij })
≤ reg(Hj \ yij ) = reg(Hj−1). (6.8)

Noting that Hj−1 is an induced subgraph of Hj , and by Lemma 5.18, this implies
that reg Hj−1 ≤ reg Hj . Therefore, coupled with (6.8), we obtain

reg Hj = reg Hj−1 for all j = 1, . . . , t.

In particular, it follows that

reg J = reg Ht = reg H0 = reg G.

To prove (6.7), it now remains to show that reg G ≤ ν + 1. This follows from
Beyarslan, Hà, and Trung [15, Theorems 3.1 and 3.2] by observing that G contains
a Hamilton path or Hamilton cycle. The proofs of [15, Theorems 3.1 and 3.2] are
inductive on |V (G)| and use (5.3) to remove one vertex at a time. The proof of
Theorem 5.2 completes.



Chapter 7
Final Comments and Further Reading

Banerjee’s inductive method [7] has also been successfully applied by various
authors, such as Alilooee, Beyarslan, and Selvaraja [3], Jayanthan, Narayanan,
and Selvaraja [120, 122], and Moghimian, Norouzi Seyed Fakhari, and Yassemi,
[139, 144], pushing Theorems 5.1 and 5.2 further to the classes of unicyclic graphs
(see Theorem 5.3) and very well-covered graphs (see Theorem 5.4). The core of
given arguments in these works is an understanding of ideals of the form Iq+1 :
〈M〉, where I = I (G) is the edge ideal of a simple graph G and M is a minimal
generator of Iq .

Generally, Iq+1 : 〈M〉 may contain squares of variables. By polarization, one can
reduce to edge ideals of graphs. The problem becomes to compare the regularity of
edge ideals of these resulting graphs to that of G. It is often possible to describe
how these resulting graphs are constructed from G, but is difficult to compare the
regularities of their edge ideals.

Since the end of our PRAGMATIC school, a number papers have appeared
addressing Problem 5.6, Conjecture 5.9, and Questions 5.12 and 5.14 (see [8, 89,
120, 121, 151]). Particularly, Conjecture 5.9 was proved for vertex decomposable
graphs by Banerjee, Beyarslan, and Hà [8] and Jayanthan and Selvaraja [121], a
weaker version of Conjecture 5.9 was established for all graphs by Seyed Fakhari
and Yassemi [151], Question 5.14 was verified by Gu, Hà, O’Rourke, and Skelton
[89], and Question 5.12 was also examined for odd cycles by the same group of
authors.

Participants in our PRAGMATIC school have also made progress toward prob-
lems and questions introduced, and their investigation has resulted in a number of
publications. Specifically, Cid-Ruiz in [39] studied the regularity and Gröbner bases
of the Rees algebra of edge ideals of bipartite graphs, and Cid-Ruiz, Jafari, Nemati
and Picone in [40] examined the regularity of powers of the edge ideal of bicyclic
graphs.
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Part III
The Containment Problem



Chapter 8
The Containment Problem: Background

The study of ideals underlies both algebra and geometry. For example, the study of
homogeneous ideals in polynomial rings is an aspect of both commutative algebra
and of algebraic geometry. In both cases, given an ideal, one wants to understand
how the ideal behaves. One way in which algebra and geometry differ is in what
it means to be “given an ideal”. For an algebraist it typically means being given
generators of the ideal. For a geometer it often means being given a locus of points
(or a scheme) in projective space, the ideal then being all elements of the polynomial
ring which vanish on the given locus or scheme. Determining generators for the ideal
defining a scheme sometimes requires significant effort, and if given generators a
geometer will usually want to know what vanishing locus they cut out. Thus while
both algebraists and geometers study ideals, their starting points are different.

These differing starting points lead to other differences. Since for a geometer it is
the vanishing locus which counts, one ideal can be swapped for another simpler one
with the same vanishing locus. In particular, for the geometer saturated ideals are
the main focus of study. This becomes relevant already in the simplest possible
geometrical situation, namely finite sets of points in projective space. Given a
radical homogeneous ideal defining a finite set of points in projective space, both
algebraists and geometers are interested in how powers of the ideal behave. The
scheme structure defined on a finite set of points in projective space by a power of
the ideal defining the points is an example of what is known as a fat point scheme.
But for the geometer what is of most interest is saturations of the powers (which in
the case of a radical ideal of points is the same thing as what is known as symbolic
powers), since the saturation of a power defines the same scheme as the power.
Partly as a way of bridging the gap between algebra and geometry, it has become
of interest to study how symbolic powers compare to ordinary powers of ideals
and specifically to try to determine which ordinary powers a given symbolic power
contains. This problem, which has become known as the containment problem, is
the focus of the next section. Here we review background that is useful in studying
the containment problem.
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8.1 Fat Points

Let p1, . . . , ps ∈ P
N be distinct points with defining ideals I (p1), . . . , I (ps) ⊆

K[Pn]. Given integers mi ≥ 0, the ideal

I =
⋂

i

I (pi)
mi ⊆ R = K[PN ] = K[x0, . . . , xN ]

is homogeneous, meaning f ∈ I if and only if every homogeneous component ft

of f is in I . Thus I is the direct sum I = ⊕

t [I ]t , where [I ]t is the vector space
span of the homogeneous elements in I of degree t .

Definition 8.1 The ideal I defines a 0-dimensional subscheme denoted Z =
m1p1 + · · · + msps ⊆ P

N which is called a fat point subscheme.

We denote the ideal I by I = I (Z). When we refer to the degree deg(Z) of Z,
we will mean the scheme theoretic degree, hence deg(Z) =∑i

(

mi+N−1
N

)

.

8.2 Blow Ups and Sheaf Cohomology

We refer to Hartshorne [103] for general background on divisors, their associated
line bundles and sheaf cohomology. However, the next fact will often allow us to
avoid dealing with some of this background. Let π : X → P

N be the blow up
of the points pi with L being the pullback to X of a general hyperplane and let
Ei = π−1(pi). The group Cl(X) of linear equivalence classes of divisors on X is
a free abelian group with basis given by the divisor classes [L], [E1], . . . , [Es]. In
case N = 2, this is an orthogonal basis for the intersection form on Cl(X), where
−L2 = E2

1 = · · · = E2
s = −1. The canonical class of X, denoted KX, is an

important divisor class; with respect to this basis it is −KX = 3[L] − [E1] − · · · −
[Es]. We will sometimes abuse notation and write −KX = 3L − E1 − · · · − Es .
Given Z = m1p1 + · · · + msps , it is convenient to denote m1E1 + · · · + msEs by
EZ. Thus for Z = p1 + · · · + ps we have −KX = 3L − EZ.

Theorem 8.2 ([97, Proposition IV.1.1]) There is a canonical K-vector space
isomorphism

H 0(X,OX(tL − EZ)) ∼= [I (Z)]t .

8.3 Hilbert Functions

Let N ≥ 1 and let I ⊆ R = K[PN ] be a homogeneous ideal, for example I = I (Z)

for a fat point scheme Z = m1p1 + · · · + msps .
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Definition 8.3 The Hilbert function of I is the function h(t, I ) = dimK[I ]t giving
the vector space dimension of [I ]t .

We define α(I) to be the least degree t such that h(t, I ) > 0. This is defined as
long as I �= (0). Note that h(t, I ) is strictly increasing for t ≥ α(I).

Given a fat point scheme Z, it is also convenient to define hZ(t) = dimK[R]t −
h(t, I (Z)), which we call the Hilbert function of Z; it is the Hilbert function of
R/I (Z) since R/I (Z) is graded and we have

dimK[R/I (Z)]t = dimK Rt − dimK I (Z)t = hZ(t).

It can be shown that hZ(t) = deg Z for t � 0 (see Geramita and Maroscia [81,
Proposition 1.1]; note that to apply this result, you need to observe that R/I (Z) is a
Cohen-Macaulay ring of dimension 1.)

Define ΔhZ(0) = 1 and ΔhZ(t) = hZ(t)−hZ(t−1) for t > 0. Then it is known
that ΔhZ is unimodal (i.e., it starts out nondecreasing, then becomes nonincreasing),
nonnegative and has ΔhZ(t) = 0 for t � 0 (again, see [81, Proposition 1.1]). We
define the regularity reg(I (Z)) of I (Z) to be the least t such that ΔhZ(t) = 0. Note
that one can show that when I = I (Z), this definition of regularity agrees with
definition of regularity given in Definition 4.4.

8.4 Waldschmidt Constants: Asymptotic α

Given points pi ∈ P
N , let Z = m1p1 + · · · + msps ⊆ P

N . Its ideal is

I (Z) = I (p1)
m1 ∩ · · · ∩ I (ps)

ms ,

and the mth symbolic power of I , denoted I (m), is the saturation of (I (Z))m, which
can be shown to be I (Z)(m) = I (mZ) = I (p1)

mm1 ∩ · · · ∩ I (ps)
mms . One can

define symbolic powers more generally, but doing so involves technicalities which
we avoid for now.

It is not hard to show that (I (Z))r ⊆ (I (Z))(r) and hence that α((I (Z))(r)) ≤
α((I (Z))r ). And if I, J ⊆ K[PN ] are nonzero homogeneous ideals, then
α(IJ ) = α(I) + α(J ). In particular, we have α((I (Z))r ) = r α(I (Z)) and thus
α((I (Z))(r)) ≤ rα(I (Z)). Easy examples show that α((I (Z))(r)) < rα(I (Z)) can
occur (for example α((I (Z))(2)) = 3 < 4 = 2α(I (Z)) for Z = p1 +p2 +p3 ⊂ P

2

with p1, p2, p3 noncollinear).
We now define an asymptotic version of α.

Definition 8.4 Let Z = m1p1 + · · · + msps be a nonzero fat point subscheme of
P

N . The Waldschmidt constant α̂(I (Z)) of I (Z) is

α̂(I (Z)) = inf

{

α((I (Z))(m))

m

∣

∣

∣

∣

∣

m > 0

}

.
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Many of the properties of the Waldschmidt constant of fat point subschemes can
be found in Harbourne’s paper [98]. We record these properties as exercises.

Exercise 8.5 (See [98, Example 1.3.3]) Let X be the surface obtained by blowing
up distinct points p1, . . . , pr . Let I (Z) be the ideal of Z = m1p1 + · · ·+mrpr and
let Ft,m = tL − mEZ. Then

α̂(I (Z)) = inf

{

t

m

∣

∣

∣

∣

h0(X,OX(Ft,m)) > 0

}

.

In fact α̂(I (Z)) is a limit, as seen in the exercise below.

Exercise 8.6 (See [98, Example 1.3.4]) Let Z be a nonzero fat point subscheme
of PN .

(a) Then 1 ≤ α̂(I (Z)) ≤∑i mi .
(b) Let m,n be positive integers. Then

α(I ((m + n)Z)) ≤ α(I (mZ)) + α(I (nZ)).

(c) Let m,n be positive integers. Then

α(I (mnZ))

mn
≤ α(I (mZ))

m
.

(d) Fekete’s Subadditivity Lemma [73] implies for each n that

α̂(I (Z)) = lim
m→∞

α(I (mZ))

m
≤ α(I (nZ))

n
.

(e) We have α̂(I (nZ)) = n α̂(I (Z)).
(f) Over the complexes, Waldschmidt and Skoda [154, 167] obtained the bound

α(I (Z))

N
≤ α̂(I (Z))

using some rather hard analysis. A proof using multiplier ideals is given in
[131]. Here is another approach which everyone now takes for granted but
which in fact was first used by Harbourne and Roé [100, p. 2] and first appears
explicitly in Harbourne and Huneke [99]. It is known that

I ((N + m − 1)rZ) ⊆ I (mZ)r

for all m, r > 0 by work of Ein-Lazarsfeld-Smith and Hochster-Huneke [62,
115]. Assuming this, one can show for each n > 0 that

α(I (mZ))

N + m − 1
≤ α̂(I (Z))
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and hence that

α(I (mZ))

N + m − 1
≤ α̂(I (Z)) ≤ α(I (mZ))

m
.

Remark 8.7 Consider Z = p1 + · · ·+ps for distinct points pi ∈ P
N . When N = 2

Chudnovsky [38] gave the following slightly improved lower bound, based on a
clever algebraic-geometric idea that his paper does not write out explicitly (see the
end of section 3 of [98] for this algebraic-geometric proof; for a more algebraic
proof, see [99]):

α(Z) + 1

2
≤ α̂(I (Z)).

For N > 2, Chudnovsky conjectured that

α(Z) + N − 1

N
≤ α̂(I (Z))

should hold, but this is still open in general. See [133] for additional discussion,
including a generalized version of the conjecture due to Demailly, and see Esnault
and Viehweg [69] for a partial result.

One can give a universal upper bound for α̂(I (Z)) depending only on the mi and
N . When this bound is not rational it is an open problem to show whether it is ever
attained.

Exercise 8.8 (See [98, Example 1.3.7].) Let Z = m1p1 +· · ·+msps be a nonzero

fat point subscheme of PN . Then α̂(I (Z)) ≤ N

√

∑

i mN
i .

Remark 8.9 When N = 2, s > 9, mi = 1 for all i and the points pi are sufficiently
general (such as generic points pi = [ai : bi : ci ], 1 ≤ i ≤ s, meaning the ratios
a1/c1, b1/c1, . . . , as/cs, bs/cs are algebraically independent over the prime field),
a famous conjecture of Nagata [141] is equivalent to the bound in Exercise 8.8 being
an equality. As a step in his counterexample to Hilbert’s 14th Problem, he verified
this in the case s is a square. It is otherwise still open.

It is not in general known how to determine α̂(I (Z)) exactly. However, by
Exercise 8.6(f), one can compute α̂(I (Z)) arbitrarily accurately by computing
α(I (mZ)) for large m. Thus for any real number a �= α̂(I (Z)), it is just a
computation to show that a �= α̂(I (Z)). For example, we have the following (see
[98, Corollary 1.3.8] for the easy proof).

Corollary 8.10 Let Z = m1p1 + · · · + msps ⊆ P
N be a nonzero fat point

subscheme. Let t be rational. If t > α̂(I (Z)), then dimK[I (mZ)]mt > 0 for all
m � 0 such that mt is an integer, and if t < α̂(I (Z)), then dimK[I (mZ)]mt = 0
for all m > 0 such that mt is an integer.



Chapter 9
The Containment Problem

Given a fat point scheme Z = m1p1 + · · · +msps ⊂ P
N , the containment problem

for Z is to determine for which r and m the containment (I (Z))(m) ⊆ (I (Z))r

holds. In this section we present some initial results for the containment problem,
and we define an asymptotic quantity, the resurgence, that measure to what extent
the containment hold for a given Z.

9.1 Containment Problems

Let Z = m1p1 + · · · + msps ⊆ P
N be a fat point subscheme. As noted in the

previous section, I (rZ) is the saturation of (I (Z))r . Thus I (Z)r = Q ∩ I (rZ) for
some M-primary ideal Q, where M = (x0, . . . , xN) (and hence Q contains a power
of M , from which it follows that [Q]t = [M]t for all t � 0). In particular, we have
that I (Z)m ⊆ I (Z)(m) for all m ≥ 1 and [I (Z)r ]t = [I (rZ)]t for all t � 0.

Exercise 9.1 (See [98, Example 3.1.1]) Let I = I (Z) for Z = m1p1 + · · · +
msps ⊆ P

N with mi > 0 for all i. Then:

(a) Im ⊆ I r if and only if m ≥ r .
(b) I (m) ⊆ I (r) if and only if m ≥ r .
(c) Im ⊆ I (r) if and only if m ≥ r .
(d) I (m) ⊆ I r implies m ≥ r , but m ≥ r does not in general imply I (m) ⊆ I r .

It is not known in general how to solve the containment problem for a given Z,
but it is useful to know that for m � 0 we always do have containment. We first
introduce the following term.

Definition 9.2 The saturation degree of I r , denoted satdeg(I r ), is the least t such
that (I r )j = (I (r))j for all j ≥ t .
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The following result is [98, Proposition 3.1.2].

Proposition 9.3 Let I = I (Z) be a fat point scheme Z ⊆ P
N . If

m ≥ max

{

satdeg(I r )

α̂(I (Z))
, r

}

,

then I (m) ⊆ I r .

Proof Since m ≥ r , we have I (m) ⊆ I (r). Since m ≥ satdeg(I r ), if [I (m)]t �= 0,
then t ≥ α(I (mZ)) ≥ mα̂(I (Z)) ≥ satdeg(I r ), so [I (m)]t ⊆ [I (r)]t = [I r ]t . Hence
I (m) ⊆ I r .

It turns out there is a very nice universal bound (given by Ein, Lazarsfeld,
and Smith [62] and Hochster and Huneke [115], motivated by work of Swanson
[158]) depending only on N and r for how big m must be to ensure that the
containment I (m) ⊆ I r holds. We give a version of this result in Theorem 9.4.
(See Definition 10.1 for how to define symbolic powers for ideals that need not be
ideals of fat points. This is the definition used in Hochster-Huneke [115]. It has the
property that I (1) = I , and that I (m) = Im for all m ≥ 1 when I is not saturated.)

Theorem 9.4 Let I ⊆ K[PN ] be a homogeneous ideal, and let r, s ≥ 1. Then we
have I (r(s+N−1)) ⊆ (I (s))r . In particular (taking s = 1), if m ≥ rN , then we have
I (m) ⊆ I r (since I (m) ⊆ I (rN) ⊆ I r ).

With this result in hand, one can ask: can one do better? There are various ways
to think about what being better means here. A result of Bocci and Harbourne [21]
shows that no constant less than N suffices:

Theorem 9.5 If c < N , then there is an r > 0 and m > cr such that I (m) �⊆ I r for
some I = I (Z), where Z = p1 + · · · + ps ⊆ P

N for distinct points pi .

There is another way to think about this which has led to a fair amount of recent
research under the rubric of Harbourne-Huneke bounds (see for example Walker
[168]). This point of view began with a question of C. Huneke: if I = I (Z) is a
radical ideal defining a finite set of points Z ⊂ P

2, is it always true that (I (Z))(3) ⊆
(I (Z))2? In thinking about this, Harbourne was led to make the following conjecture
(see [9, Conjecture 8.4.2]).

Conjecture 9.6 Let Z ⊆ P
N be a fat point subscheme. Then

I ((Nr − N + 1)Z) ⊆ I (Z)r

holds for each r > 1.

It turns out the containment I ((Nr − N + 1)Z) ⊆ I (Z)r often holds, but not
always. The first failure of containment was given by Dumnicki, Szemberg, and
Tutaj-Gasińska [58], for which the ground field was the complex numbers and N =
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r = 2. Additional failures are given by Dumnicki et al. [59], but so far no failures
over the complex numbers are known if either r > 2 or N > 2. This suggests that
perhaps the following problem at least has an affirmative answer, but this problem
remains open.

Question 9.7 Let Z ⊆ P
N be a fat point subscheme. Then is it always true that

I ((Nr − N + 1)Z) ⊆ I (Z)r

for all r � 0?

Here is a useful criterion for containment to fail.

Exercise 9.8 (See [98, Example 3.1.7]) Let Z ⊆ P
N be a fat point subscheme,

I = I (Z). If α(I (m)) < rα(I), then I (m) �⊆ I r .

9.2 The Resurgence

As we saw, for a fat point subscheme Z ⊂ P
N , the containment (I (Z))(m) ⊆

(I (Z))r is guaranteed for m ≥ Nr for all Z, but how small can m be for a specific
Z? This question led to the definition of the resurgence by Bocci and Harbourne
[21].

Definition 9.9 Given a fat point scheme Z ⊆ P
N , define the resurgence ρ(I) for

I = I (Z) to be

ρ(I (Z)) = sup
{m

r

∣

∣

∣ I (m) �⊆ I r
}

.

(See Guardo, Harbourne, and Van Tuyl [91] for an asymptotic version of the
resurgence.)

Given the ideal I of a fat point subscheme of projective space, the following facts
are useful when studying resurgences (see [21]). First, by definition of regularity
(Definition 4.1), it follows that the homogeneous generators of I have degree at most
reg(I). Moreover, [I r ]t = [I (r)]t holds for t ≥ r reg(I) and even for t ≥ reg(I r )

(because r reg(I) ≥ reg(I r ) ≥ satdeg(I r ); see [21]).
The following result is from [21]; we follow the exposition given in [98, Theorem

3.2.4].

Theorem 9.10 Let I = I (Z) for a nonempty fat point subscheme Z ⊆ P
N .

(a) We have 1 ≤ ρ(I) ≤ N .
(b) If m/r < α(I)

α̂(I )
, then for all t � 0 we have I (mt) �⊆ I rt .

(c) If m/r ≥ reg(I )
α̂(I )

, then I (m) ⊆ I r .
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(d) We have

α(I)

α̂(I )
≤ ρ(I) ≤ reg(I)

α̂(I )
,

hence α(I )
α̂(I )

= ρ(I) if α(I) = reg(I).

Proof

(a) By Theorem 9.4, we have ρ(I) ≤ N . By Exercise 9.1(d), we have ρ(I) ≥ 1.
(b) If m/r < α(I)

α̂(I )
, then α̂(I ) < rα(I)/m, so for t � 0 we have

α̂(I ) ≤ α(I (mt))/(mt) < rα(I)/m = rtα(I)/(mt) = α(I rt )/(mt),

so also α(I (mt)) < α(I rt ), hence I (mt) �⊆ I rt by Exercise 9.8.
(c) Now say m/r ≥ reg(I )

α̂(I )
. Then α(I (m)) ≥ mα̂(I) ≥ r reg(I). If t < α(I (m)), then

[I (m)]t = (0) ⊆ I r . If t ≥ α(I (m)), then t ≥ r reg(I) hence [I (m)]t ⊆ [I (r)]t =
[I r ]t . Thus I (m) ⊆ I r .

(d) This follows from (b) and (c).

Problem 9.7 has a negative answer if and only if there is an I = I (Z) with
ρ(I) = N , but no such Z is currently known. There are however a lot of examples
with ρ(I) = 1. For example, if I (m) = Im for all m > 0, then ρ(I) = 1, but it is
not known if the converse is true. As the next theorem shows, there is a nice family
of ideals that satisfy I (m) = Im.

Theorem 9.11 ([172, Lemma 5, Appendix 6]) Let I be a homogeneous ideal
generated by a regular sequence in R = K[x0, . . . , xn], i.e., I is a complete
intersection. Then

I (m) = Im for all m ≥ 1.



Chapter 10
The Waldschmidt Constant of Squarefree
Monomial Ideals

The last two chapters introduced the Waldschmidt constant of a homogeneous
ideal of set of (fat) points and some of its properties. In fact, the definition of the
Waldschmidt constant makes sense for any homogeneous ideal. In this chapter we
explain how to compute this invariant in the case of squarefree monomial ideals.
In the case of edge ideals, we will also give a combinatorial interpretation of this
invariant. Throughout this chapter, R = K[x1, . . . , xn] is a polynomial ring over
a field K, where K has characteristic zero and is algebraically closed. All ideals
I ⊆ R will be assumed to be homogeneous, and in most cases, I will be a squarefree
monomial ideal.

10.1 The Waldschmidt Constant (General Case)

In the previous two chapters, we defined the Waldschmidt constant for ideals of fat
points. However, the definition extends quite naturally to any homogeneous radical
ideal.

We set

α(I) = min{i | exist 0 �= F ∈ I with deg F = i}.
That is, α(I) is the smallest degree of a minimal generator of I . We recall the
definition of a symbolic power of an ideal.

Definition 10.1 Let I be a homogeneous ideal in R. Then the m-th symbolic power
of I is the ideal

I (m) =
⋂

P∈ass(I )

(ImRP ∩ R)

where ImRP denotes the ideal of Im in the ring RP , i.e., the ring R localized at P .
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We now recall the invariant of interest from Chap. 8:

Definition 10.2 Let I be a homogeneous radical ideal of R. The Waldschmidt
constant of I is

α̂(I ) := lim
m→∞

α(I (m))

m
.

Remark 10.3 In Chap. 8, the Waldschmidt constant was defined in Definition 8.4

as the infimun of the values α(I (m))
m

over all integers m > 0. The fact that these two
definitions are equal can be found in [21, Lemma 2.3.1].

10.2 The Squarefree Monomial Case

In general, computing the Waldschmidt constant of an ideal is quite difficult. Indeed,
both Chudnosky’s Conjecture ([38], or see Remark 8.7) and Nagata’s Conjecture
([141], or see Conjecture 8.9) can be restated as conjectures about the Waldschmidt
constant of the ideal of a set of points. However, when I is a squarefree monomial
ideal, Bocci, Cooper, Guardo, Harbourne, Janssen, Nagel, Seceleanu, Van Tuyl, and
Vu showed in [22] that there is a procedure to compute α̂(I ). We will describe this
procedure.

Recall that we call a monomial ideal I a squarefree monomial ideal if it is
generated by squarefree monomials. That is, each generator of I has the form
m = x

a1
1 · · · xan

n with ai ∈ {0, 1} for all i. The following theorem summarizes some
of the nice features of squarefree monomial ideals.

Theorem 10.4 Let I be a squarefree monomial ideal in R = K[x1, . . . , xn].
(i) There exist unique prime ideals of the form Pi = 〈xi,1, . . . , xi,ti 〉 such that

I = P1 ∩ · · · ∩ Ps .
(ii) With the Pi’s as above, the m-th symbolic power of I is given by I (m) =

Pm
1 ∩ · · · ∩ Pm

s .
(iii) For all integers m ≥ 1,

α(I (m)) = min{a1 + · · · + an | x
a1
1 · · · xan

n ∈ I (m)}.

Proof For (i), first note that a squarefree monomial ideal I is radical, that is, I =√
I . Consequently, I = P1 ∩ · · · ∩ Ps where the Pis run over all the minimal

associated prime ideals of I . Furthermore, since these associated prime ideals are
all minimal, they are unique. Finally, by Lemma 2.4, each Pi = 〈xi,1, . . . , xi,ti 〉.
For more details, see Chapter 1 of Herzog and Hibi’s book [106], and in particular,
Lemma 1.5.4. Statement (ii) can be found in [106, Proposition 1.4.4]; note this
result can also be viewed as a special case of work of Cooper, Embree, Hà, and
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Hoefel [45, Theorem 3.7]. Statement (iii) follows directly from the definition of
α(−) and a monomial ideal.

Example 10.5 We consider the following squarefree monomial ideal which we will
use as our running example. In particular, we look at

I = 〈x1x2, x2x3, x3x4, x4x5, x5x1〉 ⊆ K[x1, . . . , x5].

This ideal has the following primary decomposition

I = 〈x1, x3, x4〉 ∩ 〈x2, x4, x5〉 ∩ 〈x3, x5, x1〉 ∩ 〈x4, x1, x2〉 ∩ 〈x5, x2, x3〉.

The next result enables us to determine if a particular monomial belongs to I (m).

Lemma 10.6 Let I ⊆ R be a squarefree monomial ideal with minimal primary
decomposition I = P1 ∩ P2 ∩ · · · ∩ Ps with Pi = 〈xi,1, . . . , xi,ti 〉 for i = 1, . . . , s.
Then x

a1
1 · · · xan

n ∈ I (m) if and only if ai,1 + · · · + ai,ti ≥ m for i = 1, . . . , s.

Proof By Theorem 10.4 (ii), I (m) = Pm
1 ∩ · · · ∩ Pm

s . So x
a1
1 · · · xan

n ∈ I (m) if
and only if x

a1
1 · · · xan

n is in Pm
j for all j = 1, . . . , s. This happens if and only

if there exists at least one generator fj ∈ Pm
j such that fj divides x

a1
1 · · · xan

n (for
j = 1, . . . , s), which is equivalent to requiring aj1+· · ·+ajsj

≥ m for j = 1, . . . , s.

The above lemma is the key observation that is needed in order to determine the
Waldschmidt constant of squarefree monomial ideals. To make this more precise,
let’s return to our running example.

Example 10.7 Let I be as in Example 10.5. To determine if x
a1
1 x

a2
2 x

a3
3 x

a4
4 x

a5
5 ∈

I (m), Lemma 10.6 says we need to find integers a1, . . . , a5 that satisfy the following
inequalities

a1 + a3 + a4 ≥ m

a2 + a4 + a5 ≥ m

a3 + a5 + a1 ≥ m

a4 + a1 + a2 ≥ m

a5 + a2 + a3 ≥ m.

If we also want to find α(I (m)), we also need to find the tuple (a1, a2, a3, a4, a5) that
not only satisfies the above inequalities, but also minimizes a1 + a2 + a3 + a4 + a5
(by Theorem 10.4).

Stepping back for a moment, notice in the above example, we have described the
computation of α(I (m)) as a solution to a linear program. This idea can be extended
to all squarefree monomial ideals.
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In particular, given a primary decomposition of our squarefree monomial ideal
I = P1 ∩ · · · ∩ Ps , we define an s × n matrix A where

Ai,j =
{

1 if xj ∈ Pi

0 if xj �∈ Pi.

We then define our linear program (LP) constructed from I as follows:
minimize 1T y
subject to Ay ≥ 1 and y ≥ 0.

Here yT = [

y1 · · · yn

]

, and 1, respectively 0, is an appropriate sized vector of 1’s,
respectively 0’s.

Example 10.8 Continuing with our running example, the ideal I of Example 10.5
gives us the following LP:

minimize 1T y = y1 + y2 + y3 + y4 + y5

subject to

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 1 1 0
0 1 0 1 1
1 0 1 0 1
1 1 0 1 0
0 1 1 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

y1

y2

y3

y4

y5

⎤

⎥

⎥

⎥

⎥

⎥

⎦

≥

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1
1
1
1
1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

and

⎡

⎢

⎢

⎢

⎢

⎢

⎣

y1

y2

y3

y4

y5

⎤

⎥

⎥

⎥

⎥

⎥

⎦

≥

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0
0
0
0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

We now come to our theorem which relates this idea of a LP to the Waldschmidt
constant.

Theorem 10.9 ([22, Theorem 3.2]) Let I ⊆ R be a squarefree monomial ideal
with minimal primary decomposition I = P1 ∩ P2 ∩ · · · ∩ Ps with Pi =
〈xi,1, . . . , xi,ti 〉 for i = 1, . . . , s. Let A be the s × n matrix where

Ai,j =
{

1 if xj ∈ Pi

0 if xj �∈ Pi.

Consider the following LP:
minimize 1T y

subject to Ay ≥ 1 and y ≥ 0
and suppose that y∗ is a feasible solution (i.e., y∗ is a vector that satisfies the LP)
that realizes the optimal value. Then

α̂(I ) = 1T y∗.

That is, α̂(I ) is the optimal value of the LP.
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Proof Let (y∗)T = [y∗
1 y∗

2 · · · y∗
n

]

be a feasible solution to the LP that also realizes
the optimal solution. Because the matrix A in the LP contains only integer entries,
all the yi’s are rational (see [149, Corollary 1.3.1]; note that this result applies to
our situation since the equations in our LP all have integer coefficients). So, we can

write (y∗)T =
[

a1
b1

a2
b2

· · · an

bn

]

with integers ai, bi for i = 1, . . . , n.

Set b = lcm(b1, . . . , bn). Then A(by) ≥ b where b is an s-vector of b’s. So,
(by) is a feasible integer solution to the system Az ≥ b. In other words, for each
j = 1, . . . , s,

b

(

aj1

bj1

+ · · · +
ajsj

bjsj

)

= baj1

bj1

+ · · · +
bajsj

bjsj

≥ b.

It then follows by Lemma 10.6 that

x

ba1
b1

1 x

ba2
b2

2 · · · x
ban
bn

n ∈ I (b).

Thus,

α(I (b)) ≤ ba1

b1
+ ba2

b2
+ · · · + ban

bn

,

or equivalently,

α̂(I ) ≤ α(I (b))

b
≤ a1

b1
+ a2

b2
+ · · · + an

bn

= 1T y∗

since α̂(I ) ≤ α(I (b))
b

for all b > 0 by Remark 10.3.
To show the reverse inequality, suppose for a contradiction that α̂(I ) < 1T y∗.

Since α̂(I ) = inf
{

α(I (m))/m
}

m∈N, there must exist some m such that

α(I (m))

m
<

a1

b1
+ a2

b2
+ · · · + an

bn

= 1T y∗.

Let x
e1
1 x

e2
2 · · · xen

n ∈ I (m) be a monomial with e1 + · · · + en = α(I (m)). Then, by
Lemma 10.6, we have

ej1 + · · · + ejsj
≥ m for all j = 1, . . . , s.

In particular, if we divide all the s equations by m, we have

ej1

m
+ · · · +

ejsj

m
≥ 1 for all j = 1, . . . , s.
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But then wT = [

e1
m

· · · es

m

]T
satisfies Aw ≥ 1 and w ≥ 0. That is, w is a feasible

solution to the LP, and furthermore, α(I (m))
m

= 1T w < a1
b1

+ a2
b2

+ · · · + an

bn
= 1T y∗,

contradicting the fact that 1T y∗ is the optimal value of the LP.

Remark 10.10 Because the Waldschmidt constant of a squarefree monomial ideal
can be formulated in terms of a LP, it can be solved by using the simplex method
developed by Dantzig in the 1940s. There are a number of online calculators that
will allow you to solve a LP. Here is one example: http://comnuan.com/cmnn03/
cmnn03004/.

Remark 10.11 Note that to set up the LP to find the Waldschmidt constant of a
squarefree monomial ideal, we only need to know information about the primary
decomposition of the monomial ideal I .

Example 10.12 For the LP in Example 10.8, the feasible solution that gives the
optimal value is

yT = [ 1
3

1
3

1
3

1
3

1
3

]

.

Consequently,

α̂(I ) = 1

3
+ · · · + 1

3
= 5

3
.

By rephrasing the Waldschmidt constant as a solution as a LP, one can prove
a Chudnovsky-like result (i.e., a result similar to the statement of Chudnovsky’s
Conjecture [38]).

Theorem 10.13 ([22, Theorem 5.3]) Let I be a squarefree monomial ideal and

e = bight(I) = max{ht(Pi) | I = P1 ∩ · · · ∩ Ps}.

Then

α̂(I ) ≥ α(I) + e − 1

e
.

Remark 10.14 The above inequality was conjectured to be true for all monomial
ideals in Cooper, Embree, Hà, and Hoefel [45].

10.3 Connection to Graph Theory

We end this chapter with a connection between the Waldschmidt constant and graph
theory. Recall that we use G = (V ,E) to denote a finite simple graph on the
vertex set V = {x1, . . . , xn} with edge set E. Recall also that the edge ideal of

http://comnuan.com/cmnn03/cmnn03004/
http://comnuan.com/cmnn03/cmnn03004/
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G is defined to be

I (G) = 〈xixj | {xi, xj } ∈ E〉.

Example 10.15 Let G = (V ,E) be the graph with vertex set V = {x1, . . . , x5}
and edge set E = {{x1, x2}, {x2, x3}, {x3, x4}, {x4, x5}, {x5, x1}}. The graph G

is an example of a cycle (specifically, the five cycle) because we can represent
it pictorially as in Fig. 10.1. The edge ideal of this graph is then I (G) =
〈x1x2, x2x3, x3x4, x4x5, x5x1〉. This ideal is the same ideal as our running example
(Example 10.5) in the previous section.

We now introduce a notion that generalizes the idea of a colouring of a graph.

Definition 10.16 Let G be a graph. A b-fold colouring of G is an assignment of b

colours to each vertex so that adjacent vertices receive different colours. The b-fold
chromatic number of G, denoted χb(G), is the minimal number of colours needed
to give G a b-fold colouring.

Example 10.17 Consider the graph G of Example 10.15. The 2-fold chromatic
number of this graph G is χ2(G) = 5 since the graph can be coloured as in Fig. 10.2.
Here, R is RED, B is BLUE, G is GREEN, O is ORANGE, and P is PURPLE.

The b-fold chromatic number allows us to define a new invariant of a graph.

Definition 10.18 The fractional chromatic number of G, denoted χf (G), is defined
to be

χf (G) := lim
b→∞

χb(G)

b
.

We can now connect the Waldschmidt constant to the fractional chromatic
number.

Fig. 10.1 The five cycle
graph

x3

x2

x1

x5

x4

Fig. 10.2 A 2-fold colouring
of the five cycle graph

(R,B)

(G,O)

(P,R)

(B,G)

(O,P)
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Theorem 10.19 Let G be a finite simple graph with edge ideal I (G). Then

α̂(I (G)) = χf (G)

χf (G) − 1
.

Proof (Sketch of Main Idea) It is known that the fractional chromatic number of
a graph can also be expressed as a solution to a LP (see, for example, the book
of Scheinerman and Ullman [149]). Then one relates to this LP with the LP of
Theorem 10.9.

Remark 10.20 Although we have only stated the above result for edge ideals,
the result holds more generally for all squarefree monomial ideals. The appro-
priate combinatorial object is a hypergraph, that was introduced in Chap. 4. The
Waldschmidt constant is then related to the fractional chromatic number of the
hypergraph.

Example 10.21 In Example 10.12, we showed that α̂(I (C5)) = 5
3 . By Theo-

rem 10.19, we have

5

3
= χf (C5)

χf (C5) − 1
⇒ χf (C5) = 5

2
.

This agrees with [149, Proposition 3.1.2].

Remark 10.22 Besides the Waldschmidt constant, the fractional chromatic number
has also appeared in connection to the problems mentioned in Chaps. 1 and 2. In
particular, Francisco, Hà, and Van Tuyl [74] used some conditions on the fractional
chromatic number to show that a particular prime was an associated prime of a
power of a cover ideal.

We have only focused on the case of squarefree monomial ideals. The natural
next step is still open:

Question 10.23 Is there a similar procedure to find α̂(I ) for non-squarefree mono-
mial ideals?



Chapter 11
Symbolic Defect

In this chapter we introduce the symbolic defect of a homogeneous ideal. This
concept was introduced recently by Galetto, Geramita, Shin, and Van Tuyl [79].
There are a number of interesting questions one can ask about this invariant, and
hopefully this chapter will inspire you to investigate the symbolic defect of your
favourite family of homogeneous ideals. Throughout this lecture, we will assume
that R = K[x1, . . . , xn] is a polynomial ring over an algebraically closed field of
characteristic zero, and I will be a homogeneous ideal of R.

11.1 Introducing the Symbolic Defect

We begin with some observations. For any homogeneous ideal I , we always have
Im ⊆ I (m). As a consequence the R-module I (m)/Im is well-defined. The main idea
behind the symbolic defect of an ideal is that I (m)/Im is somehow a measure of the
“failure” of Im to equal I (m). That is, the “bigger” the module I (m)/Im, the more
Im fails to equal I (m). This suggests we may wish to study the module I (m)/Im in
more detail. Interestingly, there are only a few papers on this module; the papers of
which we know include papers by Arsie and Vatne [4], Herzog [104], Herzog and
Ulrich [108], Huneke [116], Schenzel [152], and Vasconcelos [165].

But what do we mean by “bigger”? Note that when I is a homogeneous
ideal, the R-module I (m)/Im is also a graded R-module (and also an R/Im-
module). Furthermore, since R is Noetherian, the module I (m)/Im is Noetherian.
Consequently, the quotient I (m)/Im is a finitely generated graded R-module, and
furthermore, the number of minimal generators is an invariant of I (m)/Im. So, one
way to measure “bigger” is determine the number of minimal generators of I (m)/Im.

For any R-module M , let μ(M) denote the number of minimal generators of M .
We can then define the symbolic defect of an ideal.
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licence to Springer Nature Switzerland AG 2020
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Definition 11.1 Let I be a homogeneous ideal of R, and m ≥ 1 any positive integer.
The m-th symbolic defect of I , is

sdefect(I,m) := μ
(

I (m)/Im
)

.

The symbolic defect sequence of I is the sequence

{sdefect(I,m)}m∈N .

Note that it follows directly from the definition that sdefect(I,m) = 0 if and
only if I (m) = Im. From this point-of-view, it makes sense to view sdefect(I,m) as
measuring the failure of Im to equal I (m). Before going further, let’s work out an
example.

Example 11.2 We consider the monomial ideal

I = 〈xy, xz, yz〉 ⊆ R = K[x, y, z].

Using either a computer algebra system, or computing by hand, we can show

I 2 = 〈x2y2, x2y, z, xy2z, x2z2, xyz2, y2z2〉, and

I (2) = 〈xyz, x2y2, x2z2, y2z2〉.

Thus

I (2)/I 2 =
〈

xyz + I 2, x2y2 + I 2, x2z2 + I 2, y2z2 + I 2
〉

=
〈

xyz + I 2
〉

⊆ R/I 2.

So, sdefect(I, 2) = 1.
We would like to make one other remark about this module since we will return

to it at the end of the lecture. Note that the module I (2)/I 2 is a graded R-module.
We can actually compute the dimension of each graded piece. In particular, we have

dimK

[

I (2)/I 2
]

t
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if 0 ≤ t < 3

1 if t = 3

0 if t > 3.

To see why, note that if t < 3, then [I (2)]t = (0), so the first case follows. As we
observed above, I (2)/I 2 has exactly one generator of degree 3. This gives the result
for t = 3. For t > 4, we claim that [I (2)]t = [I 2]t . We only need to check that
[I (2)]t ⊆ [I 2]t since I 2 ⊆ I (2) takes care of the other inclusion. Take any monomial
m of degree t in [I (2)]t . Since I (2) is a monomial ideal, m is divisible by one of
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{xyz, x2y2, x2z2, y2z2}. If m is divisible by one of x2y2, x2z2, or y2z2, then it must
also be I 2 since these are generators of I 2. Suppose that m is divisible by xyz.
Since m has degree t ≥ 4, there must also be another variable that divides m. But
that means that one of x2yz, xy2z, or xyz2 must divide m. So, m is in I 2, as desired.

Now that we have defined the symbolic defect, a number of natural questions
arise:

Question 11.3 Let I be a homogeneous ideal of R = K[x1, . . . , xn].
(i) How can we compute sdefect(I,m)?

(ii) When is sdefect(I,m) = 1? (In this case, I (m) is “almost” Im since I (m) =
〈F 〉 + Im for some homogeneous form F .)

(iii) Are there any applications of sdefect(I,m)?
(iv) Is the value of sdefect(I,m) related to the containment problem?
(v) What can one say about the symbolic defect sequence?

In this chapter, we will touch upon (i)− (iv) in Question 11.3. We actually know
very little about Question 11.3 (v).

11.2 Some Basic Properties

We quickly describe some basic properties that will be useful for our future
discussion.

If sdefect(I,m) = s, then there exist s homogeneous forms F1, . . . , Fs ∈ I (m)

such that

I (m)/Im = 〈F1 + Im, . . . , Fs + Im
〉

.

Note that this implies that

I (m) = 〈F1, . . . , Fs〉 + Im.

It is important to note that the Fi ’s are not unique. In particular, one can use other
coset representatives. That is, for each i = 1, . . . , s, let Gi be a form such that
Gi + Im = Fi + Im. Then

I (m)/Im = 〈G1 + Im, . . . ,Gs + Im
〉

and also I (m) = 〈G1, . . . ,Gs〉 + Im. Note, however, that it might be the case that

〈F1, . . . , Fs〉 �= 〈G1, . . . ,Gs〉.
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The only thing that is the same is the number of generators. We make this concrete
in the next example:

Example 11.4 Let I be as in Example 11.2. Then

I (2)/I 2 = 〈xyz + I 2〉 = 〈xyz + x2y2 + I 2〉

but 〈xyz〉 �= 〈xyz + x2y2〉.
The following result summarizes some useful results of sdefect(I,m).

Theorem 11.5 For all homogeneous radical ideals I ,

(i) sdefect(I, 1) = 0.
(ii) if I is a complete intersection, sdefect(I,m) = 0 for all m ≥ 1.

(iii) if X ⊆ P
2, and if X is not a complete intersection, then sdefect(I,m) �= 0 for

all m ≥ 2.

Proof Statement (i) follows from the fact that I (1) = I 1. For (ii), this follows from
a classical result of Zariski-Samuel [172, Lemma 5, Apppendix 6] that I (m) = Im

for all m ≥ 1 when I defines a complete intersection (also see Theorem 9.11). For
(iii), see [46, Remark 2.12(i)].

11.3 Computing sdefect(I,m) for Star Configurations

In general, we do not know of any algorithm to compute sdefect(I,m) efficiently.1

However, one can use the following strategy to compute this value:

Strategy 11.6 (Computing sdefect(I,m)) Let I be a homogeneous ideal of R.

(a) Find an ideal J such that I (m) = J + Im.
(b) Show that all the minimal generators of J are required.
(c) sdefect(I,m) = μ(J ).

Note that if one only carries out (a), you have only shown that sdefect(I,m) ≤
μ(J ). In [79], Galetto et al. use Strategy 11.6 to find sdefect(I, 2) when I is a star
configuration. Interestingly, the ideal J that we needed for (a) also turns out to be a
star configuration. Without further ado, here is the definition of a star configuration.

Definition 11.7 Fix positive integers n, c, and s with 1 ≤ c ≤ min{n, s}. Let L =
{L1, . . . , Ls} be a set of s linear homogeneous polynomials in K[x0, . . . , xn] such

1This might be a good research problem.
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Fig. 11.1 The linear star
configuration of 10 points in
P

2

L1

L2

L3 L4

L5

that all subsets of L of size c + 1 are complete intersections. Set

Ic,L =
⋂

1≤i1<i2<···<ic≤s

〈Li1 , . . . , Lic 〉.

The vanishing locus of Ic,L , i.e., V (Ic,L ) ⊆ P
n, is a linear star configuration.

Remark 11.8 In the above definition, we have required all the elements of L to be
linear forms. One can drop this requirement, and still define a star configuration.
To simplify our discussion, we will only focus on the linear case. See [79,
Definition 3.1]. For further details on star configurations, see the papers of Geramita,
Harbourne, and Migliore [84] and Geramita, Harbourne, Migliore, and Nagel [85].

Example 11.9 The name “star configuration” was suggested by A.V. Geramita in
response to Harbourne showing him Fig. 11.1 in 2008 while explaining to him an
early version of the results of [44]. Here we have n = 2, s = 5, and c = 2, so we take
five linear forms in K[x0, x1, x2], say L = {L1, . . . , L5}. The fact that any three
linear forms of L is a complete intersection is equivalent to the fact that no three
of the associated lines meet at the same point. In this case, the star configuration
V (I2,L ) ⊆ P

2 is the 10 = (5
2

)

points of intersections of these five lines. When we
draw the five lines, as in Fig. 11.1, we see that they make a “star” shape. Classically,
linear star-configurations were sometimes called �-laterals (see, for example, the
book of Dogachev [55] just before Lemma 6.3.24).

Example 11.10 Example 11.2 is also an example of a star configuration. In this
case, n = 2, s = 3, and c = 2, and the linear forms are L = {x, y, z} in R =
K[x, y, z].

We now describe some properties of the defining ideals of star configurations. In
particular, we have an explicit description of the generators of Ic,L , and an identity
involving the m-th symbolic power of Ic,L .
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Lemma 11.11 Fix positive integers n, c, and s with 1 ≤ c ≤ min{n, s} and let
L = {L1, . . . , Ls} be s linear forms in R = K[x0, . . . , xn]. Then the ideal Ic,L is
minimally generated by the forms

{Li1 · · ·Lis−c+1 | 1 ≤ i1 < · · · < is−c+1 ≤ s}.

In particular, Ic,L is minimally generated by
(

s
s−c+1

)

homogeneous generators of
degree s − c + 1.

Proof This result is contained in the work of Park and Shin; in particular see [145,
Theorem 2.3] for generation and [145, Corollary 3.5] for minimality.

For the ideal Ic,L of a star configuration, the m-th symbolic power can be
computed using the following result. Note that this theorem is reminiscent of the
case of squarefree monomials given in Theorem 10.4 (ii). While the next theorem
is only stated for linear star configurations, the result holds more generally for all
star configurations.

Theorem 11.12 ([85, Theorem 3.6 (i)]) Let Ic,L be the defining ideal of a linear
star configuration in P

n, with L = {L1, . . . , Ls}. For all m � 1, we have

I
(m)
c,L =

⋂

1�i1<...<ic�s

〈Li1 , . . . , Lic 〉m.

The next theorem, due to Geramita, Harbourne, Migliore, and Nagel [85], is an
extremely powerful theorem to study the symbolic powers of star configurations. In
particular, for some results about symbolic powers of linear star configurations, this
theorem implies it is enough to prove the result for the case that each linear form is
a variable (and so the defining ideal of the linear star configuration is a monomial
ideal). Again, we have specialized a result that holds for star configurations in
general.

Theorem 11.13 ([85, Theorem 3.6 (i)]) Let Ic,L be the defining ideal of a linear
star configuration in P

n, with L = {L1, . . . , Ls} ⊆ R = k[x0, x1, . . . , xn]. Let
S = k[y1, . . . , ys] and define a ring homomorphism ϕ : S → R by setting ϕ(yi) =
Li for 1 ≤ i ≤ s. If I is an ideal of S, then we write ϕ∗(I) to the denote the ideal of
R generated by ϕ(I). Let Y = {y1, . . . , ys}. Then, for each positive integer m, we
have

I
(m)

c,L = ϕ∗(Ic,Y )(m) = ϕ∗(I (m)

c,Y ).

With the above machinery, we can now prove the following result.
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Theorem 11.14 Fix positive integers n, c, and s with 1 ≤ c ≤ min{n, s} and let
L = {L1, . . . , Ls} be s linear forms in R = K[x0, . . . , xn]. Then for all integers
m ≥ 2,

I
(m)
c,L = Im

c,L + M for all m ≥ 2

where

M =
〈

L
a1
1 · · ·Las

s

∣

∣

∣

∣

|{ai | ai > 0}| ≥ s − c + 2, and
ai1 + · · · + aic ≥ m for all 1 ≤ ii < · · · < ic ≤ s

〉

.

Proof To prove this result, it is enough to prove the statement for the case that
L = {x0, . . . , xn} in R = k[x0, . . . , xn]. We can then apply Theorem 11.13 to
prove the general case.

Clearly I
(m)

c,L ⊇ Im
c,L . For any monomial p = x

a0
0 · · · xan

n ∈ M , we have ai1 +
· · · + aic ≥ m for all 0 ≤ i1 < · · · < ic ≤ n. Thus p ∈ 〈xi1, · · · , xic 〉m for

all 0 ≤ i1 < · · · < ic ≤ n. Thus p ∈ I
(m)

c,L by Theorem 11.12. Consequently

I
(m)
c,L ⊇ M , and thus I

(m)
c,L ⊇ Im

c,L + M .

To show the other containment, consider a monomial p = x
a0
0 x

a1
1 · · · xan

n ∈ I
(m)
c,L .

Since p ∈ I
(m)
c,L , we have p ∈ Ic,L . Then | supp(p)| � n − c + 2 by Lemma 11.11.

If | supp(p)| = n − c + 2, then the complement of supp(p) in {x0, x1, . . . , xn}
has cardinality c − 1. Therefore we can write

{x0, x1, . . . , xn} \ supp(p) = {xj1, . . . , xjc−1}.

Since p ∈ I
(m)

c,L , Theorem 11.12 implies ai1 + · · · + aic ≥ m for all 0 ≤ i1 < · · · <

ic ≤ n. In particular, for each xi ∈ Supp(p), we must have

ai = ai + aj1 + · · · + ajc−1 � m.

Thus p is a multiple of

∏

xi∈supp(p)

xm
i =

(

∏

xi∈supp(p)

xi

)m

which is the m-th power of a generator of Ic,L by Lemma 11.11. Therefore p ∈
Im
c,L .

On the other hand, if | supp(p)| � n − c + 3, then p ∈ M by definition.

Example 11.15 Returning to the star configuration of Example 11.2, we have n =
2, s = 3, and c = 2, with L = {x, y, z}. If we consider the case m = 2, then the
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ideal M of Theorem 11.14 is

M =
〈

xa1ya2za3

∣

∣

∣

∣

|{ai | ai > 0}| ≥ 3 − 2 + 2 = 3, and
a1 + a2 ≥ 2, a1 + a3 ≥ 2, a2 + a3 ≥ 2

〉

= 〈xyz〉

So,

I
(2)

2,L = 〈xyz〉 + I 2
2,L .

Note that in the above example, the ideal M = 〈xyz〉 actually equals

I1,L = 〈x〉 ∩ 〈y〉 ∩ 〈z〉 = 〈xyz〉.

This is an example of a much more general phenomenon, as first shown in [79,
Corollary 3.14].

Corollary 11.16 With the notation as in Theorem 11.14,

I
(2)

c,L = Ic−1,L + I 2
c,L .

Proof As in the proof of Theorem 11.14, it is enough to prove the statement for
the case that L = {x0, . . . , xn}. By [84, Lemma 2.13], we have Ic−1,L ⊆ I

(2)

c,L ,

which implies the containment I
(2)
c,L ⊇ Ic−1,L + I 2

c,L (these containments hold for
any linear star configuration ideal, not just a monomial star configuration ideal). To
prove the other containment, we use the fact that our ideals are monomial ideals.

Consider a monomial p = x
a0
0 x

a1
1 . . . x

an
n ∈ I

(2)

c,L . As observed in the proof of

Theorem 11.14, | supp(p)| ≥ n − c + 2 and, in the case of equality, p ∈ I 2
c,L .

Assume | supp(p)| � n − c + 3. Then p is divisible by one of the generators of
Ic−1,L described in Lemma 11.11. Therefore p ∈ Ic−1,L .

We now have enough machinery to determine the symbolic defect for all linear
star configurations when m = 2.

Theorem 11.17 Fix positive integers n, c, and s with 1 ≤ c ≤ min{n, s} and let
L = {L1, . . . , Ls} be s linear forms in R = K[x0, . . . , xn]. Then

sdefect(Ic,L , 2) =
(

s

c − 2

)

.

Proof By Corollary 11.16, we know I
(2)
c,L = Ic−1,L + I 2

c,L , so we need to show
that all the generators of Ic−1,L are required. By Lemma 11.11, the ideal Ic−1,L

has
(

s
s−(c−1)+1

) = ( s
c−2

)

minimal generators of degree s−c+2. By the same lemma,

the ideal Ic,L is generated in degree (s − c + 1), so I 2
c,L is generated by forms of

degree 2(s − c + 1) > s − c + 2. So, we need all of the generators of Ic−1,L via
this degree argument.
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The above result leads to the following question:

Question 11.18 What is sdefect(Ic,L ,m) for m > 2?

Some upper bounds sdefect(Ic,L ,m) were first found in [79]. Later, Biermann,
De Alba, Galetto, Murai, Nagel, O’Keefe, Römer and Seleceanu [17, Remark
4.8] computed sdefect(Ic,L , 3). Finally, Mantero [134, Corollary 4.12] completely
answered the above question; in fact Mantero’s work gives an upper bound on the
symbolic defect for all star configurations, not just linear star configurations.

We round out this section to by describing two applications of the symbolic
defect. We begin by recalling that for any homogeneous ideal I ⊆ R, α(I) =
min{d | (I)d �= 0}.

Our first application deals with finite sets of points in P
2. That is, let X =

{P1, . . . , Ps}, and let IX be the associated homogeneous ideal that contains all forms
that vanish on X. We say that X ⊆ P

2 has the generic Hilbert function if the Hilbert
function of R/IX is

HR/IX(t) = min

{

dimK Rt =
(

t + 2

2

)

, |X|
}

for all integers t ≥ 0.

(You should be aware that in some older references, e.g. Geramita, Maroscia, and
Roberts [82], a set points is sometimes said to be a set of points in generic position
if it has the generic Hilbert function. Note that the term “generic" as used in “points
in generic position" in this definition is essentially unrelated to the older classical
notion of “generic points" mentioned in Remark 8.9. )

As first shown in [79, Theorem 4.6], in some cases, the condition
sdefect(IX, 2) = 1 forces the points to lie in a special configuration.

Theorem 11.19 Fix some � ≥ 3, and let X be a set of
(

�
2

)

points in P
2 in generic

position. If sdefect(IX, 2) = 1, then X is a linear star configuration.

As a second application, we make the observation that when sdefect(I,m) = 1,
then one can create a useful short exact sequence that may be exploited. Specifically,
if sdefect(I,m) = 1, this means that there exists a homogeneous form F such that
I (m) = 〈F 〉+Im. We can then build a short exact sequence that relates Im and I (m):

0 −→ Im ∩ 〈F 〉 −→ Im ⊕ 〈F 〉 −→ Im + 〈F 〉 = I (m) −→ 0.

This short exact sequence allowed [79, Theorem 5.3] to use a mapping cone
construction to determine the minimal graded free resolution of I

(2)
2,L ⊆ P

2.

11.4 A Connection to the Containment Problem

We now go back to the the containment problem first discussed in Chap. 9 and
give a possible link to the symbolic defect. In particular, for any homogeneous ideal
I ⊆ R, Ein, Lazarsfeld, and Smith [62] showed that for any fixed m, there exists an
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integer r ≥ m such that I (r) ⊆ Im. The containment problem is to find the smallest
such r .

Arsie and Vatne [4] observed that the module I (m)/Im has the following
submodules:

I (m)

Im
⊇ I (m+1) + Im

Im
⊇ I (m+2) + Im

Im
⊇ · · · ⊇ I (r) + Im

Im
.

The containment problem is thus equivalent to finding the smallest r such that
I (r)+Im

Im = 0. One can ask the following question:

Question 11.20 If sdefect(I,m) = 1, does this give any information on the
containment problem?

We don’t know much about this question. However, here is an example that
shows that the containment problem is related to the longest possible chain of proper
submodules in I (m)/Im.

Example 11.21 Return to the ideal I = 〈xy, xz, yz〉 in Example 11.2. We showed
that

[

I (2)

I 2

]

t

= 0 except if t = 3.

In fact, the only possible proper submodule of of I (2)/I 2 is the zero module. Since
(I (3) + I 2)/I 2 is a proper submodule of I (2)/I 2, this forces (I (3) + I 2)/I 2 = 0, or
equivalently, I (3) ⊆ I 2.



Chapter 12
Final Comments and Further Reading

The recent survey [50] and the lecture notes of Grifo [88] provide more information
on symbolic powers and the containment problem for ideals.

Except in special cases (such as square free monomial ideals), there is no
algorithm for computing Waldschmidt constants. Similarly, there is no general
algorithm for computing resurgences. See [10] for examples demonstrating some
techniques for determining Waldschmidt constants and resurgences, and some
specific open problems. For another indication of the difficulty of the problem of
computing Waldschmidt constants and resurgences, see [119] for an essentially
complete determination of Waldschmidt constants and resurgences for ideals of
fat points where the number of points is at most three. This paper also obtains
results on symbolic defects in the case of ideals which are not square free. The
paper [56] gives additional properties of the symbolic defect, most notably, it is
shown that the symbolic defect sequence is a quasi-polynomial function. (We also
are pleased to note that the papers [56, 119] are some of the papers resulting from
the PRAGMATIC workshop.)
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Unexpected Hypersurfaces



Chapter 13
Unexpected Hypersurfaces

The notion of unexpected hypersurfaces is quite new; research on this topic is
growing rapidly but an orderly unified perspective has not yet been achieved.
The phenomenon itself can be defined succinctly, but the many examples of
unexpectedness that are now known seem to arise in different ways, depending
on specific properties available in each context (such as special properties of line
arrangements, or of cones, or of characteristic p > 0). This currently makes
presenting an exposition of reasonable length futile. Thus here we content ourselves
with mostly just describing some of the ways unexpectedness arises, with pointers
to the literature.

Given a fat point subscheme X = m1p1 + · · · + mrpr ⊂ P
N , let V ⊆ Rt =

[K[PN ]]t be a vector subspace. We say X fails to impose independent conditions on
V if

dimK(V ∩ [I (X)]t ) > max
{

0, dimK V −
∑

i

(

mi + N − 1

N

)

}

,

where we take I (pj ) to be the ideal generated by all forms (i.e., homogeneous
polynomials) vanishing at pj and set I (X) = I (p1)

m1 ∩ · · · ∩ I (pr)
mr , with

[I (X)]t being the vector space span of the forms in I (X) of degree t . It is easy to
find examples of a fat point subscheme X of P2 which fails to impose independent
conditions on the space V = Rt = [K[P2]]t of all forms of degree t . For example,
take X to be the fat point scheme X = 2p1 + 2p2 and take t = 2. Then the right
hand side of the displayed inequality above is 0 but clearly the square of the linear
form defining the line through p1 and p2 is a nonzero element of V ∩ [I (X)]t , so
the left hand side of the displayed equation is positive (and indeed equal to 1).

It is an open problem, even for N = 2 with the points pi being general, to
determine all X and t with V = Rt such that X fails to impose independent
conditions on V . There is a conjecture in this situation, known as the SHGH
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Conjecture, which we discuss in more detail below. There has been recent work
with V allowed to be certain proper subspaces of Rt . Given some N , t , general
points pi ∈ P

N and a subspace V ⊆ Rt , it is not very well understood under
what circumstances to expect X = ∑

i mipi ⊂ P
N to fail to impose independent

conditions on V . Thus when it does we will say that the elements of V ∩ [I (X)]t
define unexpected hypersurfaces for V , or that V admits an unexpected hypersurface
of degree t with respect to X.

13.1 The SHGH Conjecture

Open Problem 13.1 Find all degrees t and integers mi > 0 such that X =
∑

i mipi ⊆ P
N fails to impose independent conditions on V = [K[PN ]]t when

the points pi are general; i.e.,

dimK[I (X)]t > max
{

0, dimK V −
∑

i

(

mi + N − 1

N

)

}

.

The SHGH Conjecture [86, 96, 113, 150], named for the last initials of the authors
of the cited papers in temporal order, that is, Segre, Harbourne, Gimigliano, and
Hirschowitz, gives a conjectural solution for this when N = 2. In the example
above, we had t = 2 and X = 2p1 + 2p2, and every element of [I (X)]t was
divisible by L2 where L was the linear form defining the line through p1 and p2.

More generally, let X = ∑

i mipi ⊂ P
2. We will say that a curve C ⊂ P

2

is an exceptional curve for the points pi if C is reduced and irreducible with
deg(C)2 −∑i n2

i = −3 deg(C) +∑i ni = −1, where ni = multpi (C). (I.e., ni is
the multiplicity of C at pi , meaning that that if F is the irreducible form defining C,
then F ∈ I (pi)

ni but F �∈ I (pi)
ni+1.) Note that the line through two distinct points

p1 and p2 is exceptional for the two points.
Given X = ∑

i mipi ⊂ P
2, one can show that if the base locus of [I (X)]t

contains a divisor rC with r > 1 where C is exceptional for the points pi (i.e., Fr

divides every element of [I (X)]t where F is the irreducible form defining a curve

exceptional for the points pi ), then dimK[I (X)]t > max
{

0, dimK Rt −∑i

(

mi+1
2

)

}

.

The SHGH Conjecture says:

Conjecture 13.2 The converse holds when the points pi are general.

If this is true, then standard techniques allow one to compute h0(S,OS(F ))

exactly for any divisor F on S where S is the surface obtained by blowing up the
points pi . See section 4 of [98] for more details.
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13.2 A More General Problem

The notion of an unexpected hypersurface (introduced by Cook II, Harbourne,
Migliore, and Nagel [43] for curves, by Bauer et al. [11] for surfaces, and by
Harbourne, Migliore, Nagel, and Teitler [101] for hypersurfaces) was inspired by
an example given here as Example 13.7 coming from Di Gennaro, Ilardi, and Vallès
[53] (see [53, Figure 2] and the proof of [53, Proposition 7.1]) of 9 points in the
plane imposing independent conditions on quartics yet having the property that for
each point p there is a quartic curve through the 9 points having multiplicity 3 at
p. This is unexpected: the vector space of forms of degree 4 vanishing on Z is
6 dimensional (since the 9 points impose independent conditions on quartics), and
one expects that a general point p of multiplicity 3 would impose 6 more conditions,
but if this were so there would be no nonzero quartic vanishing on the 9 points and
also having a triple point at p. This is a special case of the following problem, which
in this generality is wide open:

Open Problem 13.3 Find all integers t > 0 and mi > 0 and all fat point
subschemes Z = ∑

j aj qj ⊂ P
N such that X = ∑

i mipi ⊂ P
N fails to impose

independent conditions on V = [I (Z)]t where the points pi ∈ P
N are general; i.e.,

dimK([I (X)]t ∩ V ) > min
{

0, dimK V −
∑

i

(

mi + N − 1

N

)

}

. (13.1)

Example 13.4 Both of the following examples come from Harbourne [98] and show
a connection to SHGH. In these examples, X fails to impose independent conditions
on V = [I (Z)]t .
(a) If Z = 0, this is just is just a case of Problem 13.1, so for N = 2 it is

conjecturally solved by the SHGH Conjecture.
(b) If N = 2 and Z consists of fat points where the points are general, this also in

principle is solved by the SHGH Conjecture.

The following example is in characteristic 2; it comes from [43] and is possibly
the simplest known example of an unexpected curve.

Example 13.5 Let N = 2 with X = 2p for a general point p ∈ P
2 and with

Z = q1 + · · · + q7 where the qi are the 7 points of the Fano plane (so char(K) =
2). Then this gives an example of Problem 13.3 with V = I (Z)3, so t = 3 and
dimK V = 3. Being singular at p imposes 3 conditions, so we expect no curve,
but for every point p there is a cubic form F vanishing on Z and singular at p

(specifically F = a2yz(y + z)+b2xz(x+ z)+ c2xy(x+y) vanishes at the 7 points
and is singular at p = [a : b : c]).

Example 13.5 is actually the first in a family of similar examples, which hereto-
fore has not been noticed. Let K be an algebraically closed field of characteristic
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p > 0. Let F be a finite subfield, q = |F|. Let Zq be the reduced scheme of all
q2 + q + 1 points of P2

F
⊂ P

2
K

.

Theorem 13.6 Let p = [a : b : c] ∈ P
2
K

be general, where K is an algebraically
closed field of characteristic p > 0. The scheme Zq admits an unexpected curve
(with respect to X = qp) for the vector space V = [I (Zq)]q+1 of forms of degree
q + 1 vanishing on Zq .

Proof One first checks that V is the span of yqz − yzq , xqz − xzq and xqy − xyq .
One then checks that H = (xqy − xyq)cq + (zyq − yzq)aq + (xzq − zxq)bq is in
V and has a point of multiplicity q at p. But qp imposes

(

q+1
2

) ≥ 3 conditions on
the 3 dimensional vector space V , hence H defines an unexpected hypersurface.

It is easy to see that V ⊆ [I (Zq)]q+1. To see equality holds, note that Zq is
the union of the complete intersection A of q2 points defined by M = 〈x(xq−1 −
zq−1), y(yq−1 − zq−1)〉 with the complete intersection B of q + 1 points defined by
N = 〈z, xy(xq−1−yq−1)〉. Thus I (Zq) = I (A)∩I (B) = M∩N . A form in N is of
the form Q = Dz + Exy(xq−1 − yq−1) for forms D and E of appropriate degrees.
Assume Q is in M . Since xy(xq−1 − yq−1) ∈ M we see that Dz ∈ M . But z does
not vanish on A, hence D does, so D ∈ M , hence Dz ∈ 〈yqz− yzq, xqz− xzq〉, so
Q ∈ 〈yqz − yzq, xqz − xzq, xqy − xyq〉.

Finally, it is clear that H ∈ V , and one checks that H has multiplicity q at p by
setting z = 1 and translating p to [0 : 0 : 1], and seeing that the result has no terms
of degree less than q .

Example 13.7 We now consider the example that motivated the study of unexpect-
edness. Let Z ⊂ P

2 be the reduced scheme consisting of the 9 points shown in
Fig. 13.1. Namely, start with 4 general points, shown in black, which we may assume
are [0 : 0 : 1], [0 : 1 : 0], [1 : 0 : 0], [1 : 1 : 1]. There are three singular conics that
contain all four general points (one of these conics is shown as a pair of solid lines,

p

Fig. 13.1 An unexpected quartic curve
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another as a bolded pair of dotted lines, and the third as a pair of dashed lines); their
singular points are the points shown as dotted circles. Then draw in the line through
any two of these three singular points and take the two points (shown as open circles)
where this line (shown as a dotted line) intersects the singular conic whose singular
point is the third dotted circle. The three singular points and two intersection points
give 5 additional points (which specifically are [0 : 1 : 1], [1 : 0 : 1], [1 : 1 : 0],
[−1 : 1 : 0], [1 : 1 : 2]). Let X = 3p where p is a general point (shown as two
concentric circles). Then there is a unique quartic (shown in bold) containing Z with
a triple point at p, so dimK([I (X)]4 ∩ V ) = dimK([I (X + Z)]4 = 1, even though
here dimK[I (Z)]4 − 9 = 0, so the quartic is an unexpected curve for Z with respect
to X, and hence gives an example of Problem 13.3.

It is not obvious how to find examples of unexpected curves, but Example 13.7
has a number of special characteristics that have suggested where to look.

For example, as explained in [101], after a projective linear change of coordi-
nates, the 9 points comprising Z consists of the set (up to projective equivalence)
of all points [a : b : c] ∈ P

2 such that all of the coordinates a, b, c are either
0 or ±1 and either exactly one of them or two of them are nonzero. When these
conditions are applied to (a0, . . . , aN) ∈ R

N+1 one obtains the 2(N + 1)2 vectors
(in R

N+1) of the BN+1 root system. Regarding these as points in projective space,
we get a set ZBN+1 of (N + 1)2 points in P

N . Let p ∈ P
N be a general point.

In addition to the unexpected quartic plane curve given by ZBN+1 with N = 2
and X = 3p, computer testing suggests that ZBN+1 ⊂ P

N has unexpected cubic
hypersurfaces with respect to X = 3p for all N ≥ 5, and that ZBN+1 ⊂ P

N has an
unexpected quartic hypersurfaces with respect to X = 4p for all N ≥ 3 (see [101,
Table 1]). There is as yet, however, no proof that what the computer testing suggests
might always be true is in fact always true. Other root systems also sometimes give
unexpected hypersurfaces (see [101, section 3]).

The lines dual to Z for the example given in Example 13.7, which we refer to
as the B3 line arrangement, are also very interesting. After a change of coordinates,
they can visualized as shown in Fig. 13.2. This line arrangement is an example of a
supersolvable line arrangement.

Let L be a finite set of 2 or more lines in P
2. Regarding the union CL of the

lines in L as a plane curve, the singular points of the curve are the points where
two or more lines meet. The multiplicity of of a singular point is just the number of
lines in L which contain the point. We will denote the number of lines in L by dL
and by mL the maximum multiplicity of a singular point of CL .

We say a point Q is a modular point of L if Q is a singular point of CL with
the property that if Q′ is any other singular point, then the line LQQ′ through Q and
Q′ is a line in L . (Thus a modular point can see all other singular points by looking
along lines of the arrangement.) We say L is supersolvable if it has a modular point.
The point at the center of Fig. 13.2 is modular, so the arrangement is supersolvable.

If the lines dual to the points of Z ⊂ P
2 give a supersolvable line arrangement,

it is an interesting question whether Z has unexpected curves with respect to some
X. In the case that X = mp and t = m + 1, Di Marca, Malara, and Oneto [54]



108 13 Unexpected Hypersurfaces

Fig. 13.2 The nine lines of
the arrangement B3 (the line
z = 0 at infinity is not shown)

completely characterizes which supersolvable line arrangements are projectively
dual to a point set Z having an unexpected curve. Here is their theorem.

Theorem 13.8 Let ZL ⊂ P
2 be the points dual to the lines of a complex

supersolvable line arrangement L . Let p be a general point. Then ZL admits an
unexpected curve of degree d = m + 1 with respect to X = mp for some m if and
only if 2mL < dL , in which case ZL has an unexpected curve of degree d = mL .

13.3 Unexpected Curves and BMSS Duality

Another aspect of Example 13.7 led to the paper [43]. For this example Z ⊂ P
2 is

a reduced set of points (meaning Z = ∑

j qj , so each point qj has coefficient 1),

X = mp for a general point p ∈ P
2 and t = m + 1. It is a very interesting question

for which such Z and m, V = [I (Z)]t has an unexpected curve with respect to
X. The paper [43] gives computationally effective criteria for testing whether V =
[I (Z)]t admits an unexpected curve with respect to X. When it does, an interesting
phenomenon which [101] calls BMSS duality occurs. This is a reference to the
observation in [11] that the form defining the unexpected curve shown in Fig. 13.1
is actually bihomogeneous.

Let’s denote the curve by Cp , so Cp is a quartic curve containing the 9 points
of Z with a triple point at the general point p. We can regard the unexpected curve
as defining a divisor D ⊂ P

2 × P
2, D being the closure of the set of all points

(p, q) ∈ P
2 × P

2 such that Cp is reduced and irreducible and q ∈ Cp . The form
FD(a, b, c, x, y, z) ∈ K[P2 × P

2] = K[a, b, c, x, y, z] defining D turns out to be

FD(a, b, c, x, y, z) = c3x3y − c3xy3 − b3x3z + (3ab2 − 3ac2)x2yz+

(−3a2b + 3bc2)xy2z + a3y3z + (3a2c − 3b2c)xyz2 + b3xz3 − a3yz3.
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p

Cp

Fig. 13.3 The unexpected quartic curve Cp defined by FD(a, b, c, x, y, z) = 0 (graphed as a solid
line) and the graph of FD(x, y, z, a, b, c) = 0 (dashed lines) for p = [−6 : −5 : 4] defining the
tangent cone of Cp at p

We see it is homogeneous in both sets of variables, (a, b, c) and (x, y, z), separately
(where the coordinates of p are given by (a, b, c) and the coordinates of points
q on Cp are given by assigning values to (x, y, z)) and that FD has degree 4 in
(x, y, z) and degree 3 in (a, b, c) (see [101, Example 4.6]). Thus, after picking
a specific point q = [q0 : q1 : q2] we get a cubic curve defined by the form
FD(a, b, c, q0, q1, q2) = 0, and it turns out that this cubic consists of three lines
meeting at q . When p = q , these three lines comprise the tangent cone of Cp at p,
that is the tangent lines to the three branches of Cp at the quartic curve’s triple point
p. Thus graphing FD(a, b, c, x, y, z) = 0 for a specific choice [a : b : c] of p gives
the quartic curve, and, swapping the variables, graphing FD(x, y, z, a, b, c) = 0 for
the same choice of [a : b : c] gives the tangent cone to Cp at p (see Fig. 13.3, which
originally appeared as [101, Figure 3]).

We can see this also in the case of Example 13.5. Here Z consists of 7 points, and
Cp is a cubic with a double point at p. It gives a divisor D ⊂ P

2 ×P
2 defined by the

bihomogeneous form FD = a2yz(y + z)+ b2xz(x + z)+ c2xy(x + y) of bidegree
(2, 3), and one can check that the tangent cone to Cp for each p = (p0, p1, p2) is
indeed given by a2p1p2(p1 + p2) + b2p0p2(p0 + p2) + c2p0p1(p0 + p1). Thus
the bi-degree, as before, is (m, t) where t is the degree of Cp and m = multp(Cp).

Results of [101] show that this is a fairly general phenomenon, but it is not yet
clear to what extent this phenomenon holds. See [60, 101] for further discussion.
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13.4 Cones

The unexpected quartic surface (let’s call it Sp) for the 16 points Z coming from the
root system B4 and having a general point p of multiplicity 4 is a cone with vertex
p, since it consists of the set of lines through p and any point q �= p where q ∈ Sp .

One way to obtain a hypersurface in P
N which is a cone having a vertex p which

is a general point is to take any codimension 2 variety V ⊂ P
N . The cone Cp(V ) is

the set of all lines through p and each point of V . In this situation V ⊂ Cp(V ) for
every p, and in fact V = ∩p∈PN Cp(V ). One can pick a finite set of points Z ⊂ V

so that the Cp(V ) is the hypersurface of degree d = deg(V ) having p be a point of
multiplicity d , one just needs to choose Z so that [I (Z)]d = [I (V )]d .

The quartic surface Sp is a cone, but not of the type Cp(V ), since one can show
that ∩p∈P3Sp consists exactly of the 16 points of Z plus 8 additional points (see
[101, Section 3.2]); i.e., there is no codimension 2 variety V as in the previous
paragraph. However, one can ask if cones of the form Cp(V ) ever are unexpected
for some finite subset Z ⊂ V . The following result shows that quite often they are.

Theorem 13.9 Let V be a reduced, equidimensional, non-degenerate subvariety of
P

N (N ≥ 3) of codimension 2 and degree d (V may be reducible and/or singular
but note that d ≥ 2 since V is non-degenerate, with V being two codimension 2
linear spaces if d = 2). Let p ∈ P

N be a general point. Choose Z ⊂ V so that
[I (Z)]d = [I (V )]d . Then Cp(V ) is an unexpected hypersurface for Z of degree d

and multiplicity d at P . It is the unique unexpected hypersurface of this degree and
multiplicity.

Proof This is essentially just [101, Proposition 2.4] and follows from it immedi-
ately using [I (Z)]d = [I (V )]d .

The bihomogeneous form F(a, x) ∈ K[PN ×P
N ] = K[a0, . . . , aN, x0, . . . , xN ]

defining Cp(V ) ⊂ P
N × P

N has bidegree (d, d). Being a cone, it is its own tangent
cone at p. At least when F(a, x) is irreducible it satisfies BMSS duality in the sense
that F(x, a) = ±F(a, x) (see [101, Example 4.1]).



Chapter 14
Final Comments and Further Reading

The papers [43, 101] are essential reading for this section; see also [11] and [60].
The references in these papers give additional papers that may be useful to look at.
This research topic is very new but of growing interest, so there are a lot of possible
unexplored directions to take.

Two such directions have been taken by two PRAGMATIC work groups. The
results of these groups are written up in [54] and [72]. The paper [54] classifies all
examples of point sets Z ⊂ P

2 which have unexpected curves of degree t = m + 1
with a general fat singular point X = mp, under the assumption that the lines dual
to the points of Z comprise what is known as a supersolvable line arrangement.
The paper [72] shows that the 9 point set Z in Fig. 13.1 is the only one giving an
unexpected quartic with a general point of multiplicity 3.
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Part V
Waring Problems



Chapter 15
An Introduction to the Waring Problem

An ubiquitous theme in mathematics is the rewriting of mathematical objects. This
is usually done to reveal underlying properties, to classify, to solve problems or just
for aesthetic reasons!

The first basic example is about a natural number n ∈ N. There is nothing
wrong about n itself, but we all know a fundamental result telling us that n can
be uniquely written as a product of primes. For example, 21 = 3 × 7. Similarly,
we have Lagrange’s Four Squares Theorem which tells us that any n ∈ N can
be written as the sum of (at most) four squares of natural numbers. For example,
21 = 42 + 22 + 12.

Moving from numbers to an array of numbers, we can consider questions about
rewriting matrices. A well known case is the so called rank one decomposition or
singular values decomposition in which we want to rewrite a matrix M as a sum of
rank one matrices. For example,

⎡

⎣

1 2 3
4 5 6
7 8 9

⎤

⎦ =
⎡

⎣

1 2 3
1 2 3
1 2 3

⎤

⎦+
⎡

⎣

0 0 0
3 3 3
6 6 6

⎤

⎦ .

Note that the rank of the matrix M can be defined as follows:

rk(M) = min{r | M = M1 + · · · + Mr where Mi has rank one}.

In a very natural way, we can now consider rank one decompositions of
symmetric matrices and this leads us to consider quadratic forms:

q(x, . . . , xn) = [x1 . . . xn

]

S

⎡

⎢

⎣

x1
...

xn

⎤

⎥

⎦
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where S is a symmetric n× n matrix. We can write S in diagonal form S = PDP#
where D = (dij ) is a diagonal matrix and P is invertible. If we set

⎡

⎢

⎣

y1
...

yn

⎤

⎥

⎦ = P#

⎡

⎢

⎣

x1
...

xn

⎤

⎥

⎦ ,

then we can rewrite the quadratic form as follows:

q(x1, . . . , xn) = d11y
2
1 + · · · + dnny

2
n.

Thus we can rewrite a quadratic form, that is a degree two homogeneous
polynomial, q as a sum of squares. Since there is nothing really special about degree
two forms, we can also consider forms of degree larger then two and look for sum of
powers decompositions, (see the survey of Geramita [80] and the paper of Ranestad
and Schreyer [147]). For example, if we let

f (x1, x2) = x3
1 + 3x2

1x2 + 3x1x
2
2 + x3

2

we can easily find a (very simple) sum of power decomposition, that is

f (x1, x2) = (x1 + x2)
3.

We can also look for more general rewriting of homogeneous polynomials, as in
Carlini’s paper [27]. For example, the polynomial

g(x1, x2, x3, x4) = (x1 + x2)
4 + (x1 + x2)(x3 + x4)

3 + (x3 + x4)
4

can also be written as

g(x1, x2, x3, x4) = y4
1 + y1y

3
2 + y4

2 .

In what follows we will focus on homogeneous polynomials, that we will call
forms. In particular, we will address the study of sums of powers decompositions
for forms.

15.1 Waring Problems for Homogeneous Polynomials

Inspired by Lagrange’s Four Squares Theorem, in 1770 Edward Waring asked the
following question: what is the minimal number of d-th powers needed to write any
natural number? More explicitly, Waring asked to compute

g(d) = min{r | for all n ∈ N, n = nd
1 + · · · + nd

r , ni ∈ N}.
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For example, g(2) = 4 by Lagrange’s Four Squares Theorem, and we know that
g(3) = 9 and g(4) = 19 (and not 16 as we could have hoped).

Similarly, we define

G(d) = min{r | there exists n0 such that if n ≥ n0, n = nd
1 + · · · + nd

r , ni ∈ N}.

The idea is simple: even if g(2) = 4, only a finite number of natural numbers really
need four squares, so that eventually three or less squares will suffice. Roughly
speaking, G(d) is the number of d-th powers needed to represent large enough
integers, while g(d) works for all natural numbers.

To compute g is called the small Waring problem, while to compute G is called
the big Waring problem, see [80]. Note that even the existence of these numbers,
which was proved by Hilbert, is not trivial.

From now on we are going to focus on the Waring problem for homogeneous
polynomial, thus we fix some notation:

Definition 15.1 Let S = K[x0, . . . , xn] be the polynomial ring over the field K,
and let Sd be the K vector space of homogeneous polynomial of degree d .

Definition 15.2 If F ∈ Sd , then a sum of powers decomposition of F is an
expression of the form

F = λ1L
d
1 + · · · + λrL

d
r

where λi ∈ K and Li ∈ S1 for all i.

Note that, if K = C, then all the coefficients λi can be assumed to be equal 1;
while, if K = R, then we can assume λi = ±1.

Following the Waring problems for integers we define:

Definition 15.3 For n, d non-negative integers, we let

g(n, d) = min{r | for all F ∈ Sd, F = λ1L
d
1 +· · ·+λrL

d
r where λi ∈ K, Li ∈ S1}

and

G(n, d) = min

{

r

∣

∣

∣

∣

∃U ⊆ P(Sd) open and not empty
such that ∀F ∈ U,F = λ1L

d
1 + · · · + λrL

d
r

}

.

Just a few words on “a generic element of Sd”. Technically, such an F belongs to
a non-empty Zariski open subset U ⊆ P(Sd). Since U is dense, we can also think of
F , as a “random” element of Sd . In other words, if we pick an element of Sd , it will
be generic with probability 1. However, U could be strictly contained in P(Sd), and
thus non-generic elements exist. Note that G(n, d) is sometime called the generic
rank for degree d forms in n + 1 variables.

We note that g(n, 1) = 1, g(n, 2) = n+1, and g(1, d) = d+1, but g(n, 3) is still
unknown, while we know that g(2, 3) = 5, g(2, 4) = 7, see [26, 52]. In general, we
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do not know g(n, d). However, we know G(n, d) for all values of n and d thanks to
a series of results of Alexander and Hirschowitz [1]:

Theorem 15.4 (Alexander-Hirschowitz) Let n, d be non-negative integers. Then

G(n, d) =
⌈
(

n+d
d

)

n + 1

⌉

unless (n, d) = (n, 2), (2, 4), (3, 4), (4, 3), (4, 4).

We note that the exceptions of Alexander-Hirschowitz cases are also called defective
cases. Furthermore, G(n, 2) = n + 1, G(2, 4) = 5, G(3, 4) = 10, G(4, 4) = 15,
and G(4, 3) = 8.

15.2 Existence Questions

From now on we work over the complex numbers, that is, K = C.
We defined g(n, d) and G(n, d), and we made some remarks about them.

However, we did not address a very basic issue: are our definitions well posed, that
is, do g(n, d) and G(n, d) exist? To answer this question we proceed as follows.
First we give an upper bound for g(n, d), and this is enough to prove its existence
(this will be enough to prove the existence of G(n, d) too).

The key idea behind answering the existence question is to show that there exists
a vector space basis of Sd formed by d-th powers of linear forms, and this will imply
that g(n, d) ≤ dimK Sd = Nd = (

n+d
d

)

. We begin by recalling some geometric
facts; see also Harris’s book [102] for more details:

Definition 15.5 The d-th Veronese map is νd : P(S1) → P(Sd) such that νd([L]) =
[Ld ]. The variety νd(P(S1)) is called d-th Veronese embedding of P(S1), or simply,
the d-th Veronese variety.

We note that we can write down explicitly the Veronese map by choosing suitable
monomials bases.

Example 15.6 Consider n = 2 and d = 2, and choose the monomial basis

{x0, x1, x2}
for S1, and for S2 choose the basis

{x2
0 , 2x0x1, 2x0x2, x

2
1 , 2x1x2, x

2
2 }.

Now we can write P(S1) � P
2 and P(S2) � P

5, and thus we get

ν2 : P2 → P
5

[a : b : c] �→ [a2 : ab : ac : b2 : bc : c2].
This map is the well known form of the 2-Veronese embedding of P2 into P

5.
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Following our original idea, we want to find

L1, . . . , LNd ∈ S1

such that the linear span

〈νd(L1), . . . , νd (LNd )〉

is the whole of P(Sd). We then want to exploit the observation that if the linear span
〈νd(L1), . . . , νd (LNd )〉 is strictly contained in P(Sd), then there exists a hyperplane
H containing all the points νd(Li) for 1 ≤ i ≤ Nd . We use the following lemma.

Lemma 15.7 The following are equivalent facts:

• νd([L]) ∈ H ⊂ P(Sd);
• ν−1

d (H) is a degree d hypersurface in P(S1) containing the point [L].

Proof We just give the idea for n = 2 and d = 2. In this case ν2 : P2 → P
5 and

we denote with y0, . . . , y5 the coordinates on P
5. Thus the hyperplane H is the zero

locus of

α0y0 + · · · + α5y5

for some αi ∈ C, and thus ν−1
d (H) is the zero locus of

α0x
2
0 + α1x0x1 + α2x0x2 + α3x

2
1 + α4x1x2 + α5x

2
2

which is clearly a degree 2 curve in the plane, that is, a conic. Similarly, if L =
ax0 + bx1 + cx2, then ν2([L]) is the point with coordinates

[a2 : ab : ac : b2 : bc : c2].

Thus, ν2([L]) ∈ H if and only if

α0a
2 + α1ab + α2ac + α3b

2 + α4bc + α5c
2 = 0,

and this is equivalent to saying that

[L] ∈ ν−1
d (H).

With this fact in mind we go back to our idea, that is, we want to find Nd points
in P

n � P(S1) not lying on a degree d hypersurface.

Theorem 15.8 There exist points P1, . . . , PNd ∈ P
n not on a degree d hypersur-

face.
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Proof Again, we just give a sketch of the proof for n = 2. If d = 1, then N1 = 3
and we need to find three points not a line, which is not difficult to do.

If d = 2, then N2 = 6 and we need to find six points not on a conic. To do
this, choose three not concurrent lines �1, �2 and �3. Now pick six distinct points
P1 ∈ �1, P2, P3 ∈ �2 and P4, P5, P6 ∈ �3 not lying at the intersection of the lines.
We claim that the set X = {P1, . . . , P6} is not contained in any conic. To see this
we use Bezout’s Theorem. Assume for a contradiction that C ⊃ X is a conic, that is,
a degree 2 plane curve. Since �3 ∩C contains at least three points, and this exceeds
the product of the degrees, then C ⊃ �3, an thus C = �3 ∪ � for some line �. Note
that � must contain P1, P2 and P3. Thus, � ∩ �2 contains at least two points and, by
Bezout’s Theorem, � = �2. Thus, C = �3 ∪ �2 and C does not contain P1, giving
us the contradiction C �⊃ X.

The same line-by-line construction works for any degree d in P
2 and can be

extended to P
n.

We can now prove the existence of g(n, d).

Corollary 15.9 For non-negative integers n and d , g(n, d) is well defined, and we
have that

g(n, d) ≤ Nd.

Proof Choose points Pi = [Li] ∈ P(S1), 1 ≤ i ≤ Nd not lying on any degree d

hypersurface. Thus, the linear span

〈νd(L1), . . . , νd (LNd )〉

does not lie on any hyperplane, and thus it coincides with the whole of P(Sd).

Note that for n = 2 and d = 3, we get N3 = 10, although we know that
g(2, 3) = 5. Thus the upper bound provided by our argument is quite rough in
general. Using a Bertini type argument it is possible to show that g(n, d) ≤ Nd − 1;
note that this bound is sharp for n = 1. However, the bound is sharp for n = 1,
where Nd = d + 1 and g(1, d) = d + 1.

We finally show the existence of G(n, d).

Corollary 15.10 For non-negative integers n and d , G(n, d) is well defined and we
have that

G(n, d) ≤ Nd.

Proof Set U = P(Sd) and note that U is an open non-empty set. If F ∈ U , then
F can be written as the sum of at most g(n, d) powers of linear forms.0 Thus
G(n, d) ≤ g(n, d), and the conclusion follows.



Chapter 16
Algebra of the Waring Problem for
Forms

16.1 Apolarity

The most effective tool to deal with the Waring problem for forms is the so-called
Apolarity Lemma (see Iarrobino and Kanev [117] and the lecture notes of Carlini,
Grieve, and Oeding [32]). To introduce the Apolarity Lemma we need to briefly
review some notion from apolarity theory, following Geramita [80].

Definition 16.1 Consider the rings

S = C[x0, . . . , xn] and T = C[y0, . . . , yn]

and define the apolarity action of T on S by extending the following: let ∂ =
y

a0
0 · · · yan

n ∈ Td and let F ∈ S, we set

∂ ◦ F = ∂d

∂
a0
y0 · · · ∂an

yn

F.

Note that this definition makes S into a T -module via differentiation and that the
elements of T can be see as partial differential operators on S.

One key object is the following:

Definition 16.2 Let F ∈ Sd . The annihilator of F is

F⊥ = {∂ ∈ T | ∂ ◦ F = 0}.

The following lemma collects some of the basic properties of the ideal F⊥; for a
proof see [80].
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Lemma 16.3 If F ∈ Sd , then F⊥ ⊆ T is a homogeneous ideal, and T/F⊥ is an
artinian Gorenstein ring with socle degree d , that is, the annihilator of 0 in the
T/F⊥ has dimension one and it is generated in degree d .

Note that F⊥ is often, but informally, called the perp ideal of F ; we recall some
of the basic properties in the following exercise.

Exercise 16.4 Prove that, if F ∈ Sd is not the zero polynomial, then the Hilbert
function HF(T/F⊥, t) = dimK Tt − dimK〈F⊥〉t is symmetric. Furthermore, we
have HF(T/F⊥, 0) = 1 = HF(T/F⊥, d), and HF(T/F⊥, t) = 0 for t ≥ d + 1.

Example 16.5 We let F = xy2 ∈ S = C[x, y], and we compute F⊥ ⊂ T =
C[X,Y ]. Note that the notational difference in S and T is sometimes suggested
by good sense (there are only two variables) and sometimes by personal taste
(derivations are now denoted with upper case letters, but they could be denoted
by Greek letters).

We proceed to compute F⊥ degree by degree. We start by noting that 〈F⊥〉0 =
〈0〉 (this is always the case unless F = 0).

To compute 〈F⊥〉1 we use linear algebra:

aX + bY ∈ 〈F⊥〉1 ⇔ (aX + bY ) ◦ F = ay2 + 2bxy = 0 ⇔ a = b = 0

and in conclusion 〈F⊥〉1 = 〈0〉.
To compute 〈F⊥〉2 we proceed similarly:

aX2 + bXY + cY 2 ∈ 〈F⊥〉1 ⇔ (aX2 + bXY + cY 2) ◦ F = 2by + 2cx = 0 ⇔ b = c = 0

and in conclusion 〈F⊥〉1 = 〈X2〉.
To compute 〈F⊥〉3:

aX3 + bX2Y + cXY 2 + dY 3 ∈ 〈F⊥〉1 ⇔ (aX3 + bX2Y + cXY 2 + dy3) ◦ c = 0 ⇔ c = 0

and in conclusion 〈F⊥〉1 = 〈X3,X2Y, Y 3〉.
Hence, since 〈F⊥〉4 = T4, we conclude that F⊥ = 〈X2, Y 3〉.
We conclude with two results about the annihilator of monomials (see Carlini,

Catalisano, and Geramita [31] for a proof of the first lemma) and of binary forms
(the latter is usually attributed to Sylvester, see [41] for a proof of the second
lemma):

Lemma 16.6 If F = x
a0
0 · · · xan

n with n ≥ 1 and a0 ≤ ai for all i, then

F⊥ = 〈Xa1+1
0 , . . . , Xan+1

n 〉.

Lemma 16.7 If F ∈ C[x, y] is a degree d form, then

F⊥ = 〈g1, g2〉,

and deg g1 + deg g2 = d + 2.
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16.2 The Apolarity Lemma

We now come to the main result of this chapter.

Lemma 16.8 (Apolarity Lemma [117, Lemma 1.31]) If F ∈ Sd , then the
following are equivalent:

• F = λ1L
d
1 + · · · + λrL

d
r , with λi ∈ C and Li ∈ S1 for all i;

• F⊥ ⊃ I (X) where I (X) is the ideal of

X = {[L1], . . . , [Lr ]} ⊂ P
n � P(S1),

that is, X is a set of r distinct points.

Example 16.9 Since (xy2)⊥ = 〈X2, Y 3〉 and

I = 〈Y 3 − X3〉 ⊂ (xy2)⊥,

is the ideal of three distinct points in P
1, we know that xy2 can be written as a sum

of three cubes.

Example 16.10 Let us see, in some very special cases, what we can say about F ∈
Sd if we know the set X such that F⊥ ⊃ I (X).

If X = {[L]}, then F = λLd for some λ ∈ C. Thus, after changing variables,
F = xd .

If X = {[L1], [L2]}, then F = λ1L
d
1 + λ2L

d
2 for some λ1, λ2 ∈ C. Thus, after

changing variables, F = xd + yd .
If X = {[L1], [L2], [L3]}, then F = λ1L

d
1 + λ2L

d
2 + λ3L

d
3 for some λ1, λ2, λ3 ∈

C. Now there are two cases to consider: (i) the points of X are collinear, and (ii)

the points of X are not collinear. In case (i), after changing variables, we get that
F = F(x, y), that is, F is actually a polynomial in two variables. In case (ii), after
changing variables, F = xd + yd + zd .

The previous example shows that a form in S could actually involve less than
n variables. To find the least number of variables needed to write down F , we can
explicitly use apolarity as shown by the following lemma; for a proof see [28].

Lemma 16.11 If F ∈ Sd , then the following are equivalent:

• there exist A1, . . . , Am ∈ S1, m < n such that F ∈ C[A1, . . . , Am];
• F⊥ ⊃ I (X) where X ⊂ P

n is a set of points lying on a linear space of dimension
m;

• dimK〈F⊥〉1 ≥ n − m.

Example 16.12 Let n = 2 and consider F ∈ Sd such that F⊥ ⊃ I (X) where

X = {[x − y], [x − z], [y − z]} ⊂ P(S1),
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that is, X = {[1 : −1 : 0], [1 : 0 : −1], [0 : 1 : −1]} ⊂ P
2. Thus, by the Apolarity

Lemma, we have that

F = α(x − y)d + β(x − z)d + γ (y − z)d

with α, β, γ ∈ C. Hence, by setting A1 = x − y and A2 = x − z, we see that
F ∈ C[A1, A2].

16.3 Waring Rank

We now introduce the notion of Waring rank, or simply rank, of a form.

Definition 16.13 If F ∈ Sd , then the Waring rank of F is

rk(F ) = min{r | F = Ld
1 + · · · + Ld

r , Li ∈ S1, i = 1, . . . , r}.

The connection with the Apolarity Lemma is straightforward.

Exercise 16.14 Prove that, if F ∈ Sd , then

rk(F ) = min{r | F⊥ ⊃ I (X), X a set of r distinct points}.

Since the ideal of a finite set of points in P
1 is a principal ideal generated by a

squarefree form, we have the following corollary.

Corollary 16.15 If F ∈ Sd and n = 1, then

rk(F ) = min{r | 〈F⊥〉r contains a non-zero squarefree form}.

Example 16.16 If F = xy2, then rk(F ) = 3 since the least degree of a squarefree
form of 〈X2, Y 3〉 is three.

Example 16.17 We let F = xyz and we will compute rk(F ). Since F =
〈X2, Y 2, Z2〉 does not contain linear forms, we immediately see that rk(F ) ≥ 2
since any set of one or two points lie on line. Thus rk(F ) ≥ 3. It is also easy to find
an upper bound for the rank; note that

〈Y 2 − X2, Z2 − X2〉 ⊂ F⊥

is the ideal of a (complete intersection) set of four points, and thus rk(F ) ≤ 4. We
have to decide whether rk(F ) = 3 or rk(F ) = 4. We note that rk(F ) = 3 if and
only if there exists a set of three distinct points X ⊂ P

2 such that I = I (X) ⊂ F⊥.
Since there is no linear form in F⊥, the three points cannot be collinear, and thus
I = (Q1,Q2,Q3) where Q1,Q2,Q3 ∈ T2 are the minimal generators of the ideal.
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Thus, I ⊆ F⊥ and both ideals are generated by three degree two elements, and
hence, I = F and this is a contradiction. In conclusion, rk(F ) = 4.

The previous example can be extended to provide an upper bound for the rank of
any monomial. However, to actually compute the rank, some completely non-trivial
idea is necessary and one can obtain the following result.

Theorem 16.18 ([31]) Consider the monomial F = x
a0
0 · · · xan

n . If a0 ≤ ai for all i

and n ≥ 1, then

rk(F ) =
n
∏

i=1

(1 + ai).

There are a few cases in which we can actually compute the Waring rank of a
given form. For example, we have a nice formula in the case of monomials, and we
have a nice algorithm in the case of binary forms, using the so-called Sylvester’s
algorithm. Here is the algorithm: let F ∈ C[x, y] and compute F⊥ which we know
is a complete intersection of the type F⊥ = 〈g1, g2〉 and assume that deg g1 ≤
deg g2. If g1 is a squarefree element, then the ideal 〈g1〉 is the ideal of a set of deg g1
distinct points, and it is easy to see that rk(F ) = g1. If g1 is not squarefree, then we
use Bertini’s Theorem which assures us that we can find a squarefree element in F⊥
of deg g2. It is again easy to see that, in this case, rk(F ) = deg g2.

16.4 A Sketch of a Proof of the Apolarity Lemma

We finish this chapter with a guided sketch of the proof of the Apolarity Lemma.
One direction of the lemma is straightforward.

Lemma 16.19 Let X = {[L1], . . . , [Lr ]} with Li ∈ S1. If F = ∑r
i=1 λiL

d
i , with

λi ∈ C, then I (X) ⊂ F⊥.

Proof Let ∂ ∈ I (X) and note that ∂ ◦ F =∑r
i=1 λi∂ ◦ Ld

i . If deg ∂ > d , then it is
clear that ∂ ◦ F = 0. If deg ∂ ≤ d , then it is easy to check that

∂ ◦ Ld is proportional to ∂(a0, . . . , an)

where L = a0x0 + · · ·+ anxn. Since, for L = Li , ∂(a0, . . . , an) = 0, the statement
follows.

To complete the proof of the Apolarity Lemma, we need to prove the converse
of the previous lemma, that is, if I (X) ⊂ F⊥, with X = {[L1], . . . , [Lr ]}, then
F =∑r

i=1 λiL
d
i , for λi ∈ C.

We present the proof in the form of a series of exercises which, just by looking at
the statement, give a clear idea of the development of the argument. For help filling
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in the gaps we suggest the reader use Geramita’s paper[80] or, for a quick proof, we
refer to the introduction of Ranestad and Schreyer [147].

Exercise 16.20

1. Consider the apolarity pairing

Sd × Td → C

(F, ∂) �→ ∂ ◦ F.

For V ⊂ Sd , we define

V −1 = {∂ ∈ Td | ∂ ◦ F = 0 for all F ∈ V },

while for W ⊂ Td , we define

W−1 = {F ∈ Sd | ∂ ◦ F = 0, for all ∂ ∈ W }.

Prove that the apolarity pairing is a perfect paring, that is, for any F ∈ Sd ,
〈F 〉−1 = Td if and only if F = 0 and, for any T ∈ Td , 〈T 〉−1 = Sd if and only if
T = 0.

2. Prove that, for W = 〈F⊥〉d , one has W−1 = {λF : λ ∈ C}.
3. Prove that if W1,W2 are subspaces of Td , then one has (W1 ∩ W2)

−1 = W−1
1 +

W−1
2 .

4. Prove that if X = {[L1], . . . , [Lr ]}, that is X is a set of r points, then I (X) =
⋂r

i=1 ℘i , where ℘i = I ({[Li ]}).
5. Let ℘i = I ({[Li]}) for 1 ≤ i ≤ r . Prove that, if F⊥ ⊃ ∩r

i=1℘i , then 〈F⊥〉d ⊃
⋂r

i=1(℘i)d and thus

〈F⊥〉d−1 ⊆ 〈℘1〉d−1 + · · · + 〈℘r〉d−1.

6. Let ℘i = I ({[Li]}) and prove that 〈℘1〉d−1 = 〈Ld
i 〉d .



Chapter 17
More on the Waring Problem

In this chapter, we continue to explore problems related to the Waring problem
introduced in the last two chapters.

17.1 Maximal Waring Rank

Given n and d , we do not know in general how big the Waring rank can actually be.
Of course, for any S ∈ Sd we know that rk(F ) cannot exceed dimK Sd , but, usually,
the rank of F is (far) less than dimK Sd . Thus we can ask the question: what is the
largest value of rk(F ) when F varies in Sd? With our notation, we are asking for
g(n, d).

In the case of binary forms, that is n = 1, we have the following complete
answer.

Lemma 17.1 If d is a non-negative integer, then g(1, d) = d . If F is a binary
degree d form, then rk(F ) = d if only if F = LMd−1 for some linear forms L and
M .

Proof We know that F⊥ = 〈g1, g2〉 and deg g1 + deg g2 = d + 2. In particular,
unless F = Ld , the ideal F⊥ is generated in degree at most d and thus, by
Sylvester’s algorithm, the rank of F is at most d . Clearly, rk(LMd−1) = d .
Conversely, if rk(F ) = d , then deg g1 = 2, deg g2 = d and g1 is a square; by a
variable change we may assume g1 = X2. Hence, F = Y d + XYd−1 for a suitable
linear form Y and the conclusion follows.

Note that the binary forms having maximal rank are monomials.
Since the binary case is completely known, we consider the three variable case.

Here we know that, for each degree d , there are degree d monomials having
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rank higher than the generic rank, see Carlini, Catalisano, and Geramita [31]. For
example, the monomials xydzd have rank (d + 1)2 which is strictly higher than the
generic rank G(2, 2d+1) as soon as d ≥ 4. Unluckily, monomials in three variables
do not provide example of forms of maximal rank; for example

• g(2, 3) = 5 see [130], but the largest rank monomial is xyz with rk(xyz) = 4;
• g(2, 4) = 7 see [52], but the largest rank monomial is xyz2 with rk(xyz2) = 6.
• g(2, 5) = 10 see [52], but the largest rank monomial is xy2z2 with rk(xy2z2) =

9.

Very little is known about g(n, d) for n > 3, see, for example, Buczinki and
Teitler [26]. The best bound known that is valid in general is due to Blekermann and
Teitler [20], specifically,

g(n, d) ≤ 2G(n, d).

That is, the maximal Waring rank is at most twice the generic rank. However, this
bound is not sharp, e.g., G(1, 3) = 2, but g(1, 3) = 3. The techniques used to
prove these results are various and go from basic topological techniques to a deep
algebraic study of annihilator ideals under the apolarity action.

17.2 It is More Complex Over the Reals

In the previous chapters we only considered the complex case, but the real case is,
of course, of great interest. Thus, we consider a real sum of powers decomposition
of F ∈ Sd , that is, an expression of the form

F = λ1L
d
1 + · · · + λrL

d
r

where λi ∈ R and Li are linear forms with real coefficients for all i. In particular,
the real rank of F is

rkR(F ) = min{r | F = λ1L
d
1 + · · · + λrL

d
r , λi ∈ R, Li ∈ R[x0, . . . , xn]}.

Clearly the real rank rkR(F ) is always at least the complex rank of F , but we do
not know much beside this.

Up to now binary forms have always provided a safe place to start our
investigations. Thus we repeat the process and we start with a success, the real rank
of binary monomials, see Boij, Carlini, and Geramita [23].

Theorem 17.2 Let a, b be non-negative integers. Then

rkR(xayb) = a + b.
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However, even for a binary form F , as soon as we leave the monomial case, we
do not know rkR(F ) in general. To see why this is the case, think of Sylvester’s
algorithm. We now have to find a minimal degree squarefree element of F⊥ having
only real roots! For more on this see Blekermann [19].

If we stick to monomials we can make some progress, even in more than two
variables. Note that the complex rank of F = xayb is max{a + 1, b + 1}, thus the
complex and the real rank of the monomial F coincide if and only if either a = 1
or b = 1. It is a nice surprise to see that this fact is not a binary case accident, but a
general property as shown by Carlini, Kummer, Oneto, and Ventura [34].

Theorem 17.3 The complex and the real rank of x
a0
0 · · · xan

n coincide if and only if
min{a0, . . . , an} = 1.

Thus we know the real rank of some monomials. The first unknown case is for
F = x2y2z2 where 9 < rkR(F ), but we do not know the exact value of the real rank
(though we know that rkR(F ) ≤ 13 from Carlini and Ventura [30]). The techniques
used to get these results are incredibly different and they range from Descartes’s
rule of sign to the theory of quadratic forms.

17.3 Waring Loci

In [147] Ranestad and Schreyer introduced the variety of sum of powers describ-
ing all possible sum of powers decompositions of a given form F involving r

summands. This variety is denoted V SP(F, r), and it can be described inside
a suitable Hilbert scheme of sets of points in projective space or inside suitable
Grassmannians.

Each point of V SP(F, r) gives a sum of powers decomposition of F involving
r summands and V SP(F, r) itself describe all such possible decomposition in a
beautiful concise geometric way. However, it is possible to break up V SP(F, r),
providing a coarser, but easier to control, description of all sum of powers
decompositions of F of a fixed length.

The Waring locus of F ∈ Sd , as introduced by Carlini, Catalisano, and Oneto
[33], describes all linear forms which can appear in a minimal sum of powers
decompositions of F

WF =
⎧

⎨

⎩

[L] ∈ P
n

∣

∣

∣

∣

∣

∣

F = Ld +
rk(F )−1
∑

i=1

Ld
i , Li ∈ Sd

⎫

⎬

⎭

.

Similarly one can define the forbidden locus of F as the complement of W (F ),
that is, FF = P

n \W (F ); also note that F is assumed to essentially involve n + 1
variables as defined by Carlini [28], that is, there is no linear differential operator
annihilating F .
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In general it is not easy to describe the Waring/forbidden locus of a given form
F . But there are families of forms for which we have a complete description, such
as, binary forms, monomials, and ternary cubics. We briefly summarize the results
contained in [33]. We begin with binary forms.

Theorem 17.4 Let F be a degree d binary form, and let g ∈ F⊥ be an element of
minimal degree. Then

1. if rk(F ) < ) d+1
2 *, then WF = V (g);

2. if rk(F ) > ) d+1
2 *, then FF = V (g);

3. if rk(F ) = ) d+1
2 * and d is even, then FF is finite and not empty; and

4. if rk(F ) = ) d+1
2 * and d is odd, then WF = V (g).

Cases (1) and (2) deal with a form F not having generic rank. If the rank of F

is smaller than the generic rank, then the decomposition is unique and the Waring
locus is a finite set of points. If the rank of F is larger than the generic rank, then
the forbidden locus is finite, that is, all but a finite number of forms can be used to
minimally decompose F . Think of d = 3 and of [F ] on a tangent line to the twisted
cubic curve in [L], all points of the curve, but not [L], can generate a trisecant plane
containing [F ]. Cases (3) and (4) deal with the generic rank case; in the d odd case
the generic form F has unique minimal decomposition, hence WF is finite.

We now consider monomials.

Theorem 17.5 If M = x
d0
0 · · · xdn

n ∈ S , then

FM = V (X0 · · ·Xm) ⊂ P
n,

where m = max{i | di = d0}.
This result says that the forbidden locus for monomials is always closed and

non-empty. In particular, almost all linear forms can appear in some minimal sum of
powers decomposition of a given monomial. This fact can be used to simultaneously
decompose monomials as shown by Carlini and Ventura [30]. See also Carlini and
Chipalkatti [29] for more on simultaneous Waring decompositions.

In all the previous example either FF of WF is closed. However, this is not
always the case, as it is shown by ternary cubic cusps.

Theorem 17.6 If F = z3 + xy2, then

WF = {[0 : 0 : 1]} ∪ {[a : b : 0] | a, b ∈ C and a �= 0}.

In words, the Waring locus of z3 + xy2 is given by a point, corresponding to the
linear form z3, and a line minus a point, corresponding to the binary forms in the
variables x, y except the forbidden point for xy2 which is [y3].

We note that, in all known cases, the forbidden locus of F is never empty, and
actually there is a conjecture: for any form F the forbidden locus is not empty. The
interest of the conjecture lies in the following heuristic remark: the larger the rank
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of F is, the more minimal decompositions of F will exist and thus the Waring locus
will be quite large. However, forbidden points always seems to exist. For example,
the plane cubic of maximal rank F = x2(xy + z2) has a forbidden locus consisting
of exactly one single point, namely FF = {[x3]}. The techniques used are a mixture
of geometry and algebra: on the one hand one studies the geometry of apolar subsets
and on the other hand one uses algebraic techniques to study the rank of a form plus
the power of a linear form.



Chapter 18
Final Comments and Further Reading

In these short chapters we just started to explore a very large and intriguing field
of mathematics. During the school, our focus was on homogeneous polynomials.
However, this is just one of the many landmarks of the subject.

A homogeneous polynomial is just an example of a very special kind of tensor,
namely a symmetric tensor. The setting of Waring problems and Waring rank, both
from the algebraic and geometric point of view, can be carried over to tensors; a
very good reference for this topic is the book of Landsberg [129].

In these chapters we mainly worked on the field of complex numbers. It is also
possible to consider other fields such as the reals and finite fields. However, the
situation is very different. Indeed, over finite fields the Waring rank is not always
well defined. As an example, consider the form xy over the finite field with two
elements. Whenever we compute (ax + by)2 only pure squares survive. Moreover,
the same definition of G(n, d) gets affected in some way. Over the reals there are
distinct open non-empty subsets over which the rank is strictly bounded by distinct
values which are called typical ranks (see, for example Comon and Ottaviani [42]).
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Chapter 19
Proposed Research Problems

In this chapter we collect together the projects that were initially presented to the
students of PRAGMATIC. Each project was related to the theme of the workshop,
i.e., “Powers of ideals and ideals of powers”. Many of these questions are open-
ended (and perhaps not well-defined). The intention, however, was to give each
group of students some initial suggestions to guide their own research.

19.1 Project 1: The Waldschmidt Constant of Monomial
Ideals

(This project is related to the material of Chap. 10.) Let I be a homogeneous ideal
of R = K[x1, . . . , xn]. For any homogeneous ideal, let α(I) = min{d | Id �= 0}.
That is, α(I) is the smallest degree of nonzero generator of I . The m-th symbolic
power of I is defined by

I (m) :=
⋂

P∈ass(I )

(ImRP ∩ R)

where ass(I) denotes the associated primes of I and RP denotes the ring R localized
at the prime ideal P .

The Waldschmidt constant of I , denoted α̂(I ), is defined to be the limit

α̂(I ) = lim
m→∞

α(I (m))

m
.

The Waldschmidt constant was introduced in the 1970s by Waldschmidt [167]. More
recently, Bocci and Harbourne [21] showed that the Waldschmidt constant can be
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used to find a lower bound on the resurgence of an ideal. However, in general,
computing α̂(I ) is difficult problem. This project is related to the following question.

Question 19.1 Suppose that I is a monomial ideal. What is α̂(I )?

When I is squarefree monomial ideal, then this question was answered in [24,
45], and described in Chap. 10. However, little is known about this question when I

is not a squarefree monomial ideal. The goal of this project is to find other monomial
ideals where one can compute α̂(I ).

Question 19.1 is very open-ended, so here are some possible suggestions to refine
this problem:

• Consider nice classes of non-squarefree monomial ideals. One possible family
to consider are the lex-segment monomial ideals (you can find the definition in
Herzog-Hibi’s book Monomial Ideals [106].) You may wish to start with the case
that I is generated by all the monomials of degree d in R = K[x1, . . . , xn].

• The polarization of a monomial ideal I , denoted I pol, is a squarefree monomial
ideal constructed from the monomial ideal I (see Definition 4.28). In general, the
ideal I pol inherits many properties of I . However, it is currently not known how
the Waldschmidt constant of these two ideals compare. Can you determine any
relationship between these values? If so, you may be able to use [24] to obtain
bounds on the Waldschmidt constant for any monomial ideal.

• With respect to the above problem, you may wish to first consider the case that I

is generated only in degree two. So, I = 〈x2
i1
, x2

i2
, . . . , x2

is
〉 + I (G) where I (G)

is the edge ideal of some finite simple graph. You may then be able to use some
of the properties of edge ideals (see, e.g., [164]).

Some relevant references are [21, 24, 45, 106, 164]. The paper of Cooper et al.
[45] might be of interest in that it uses a polyhedron to study symbolic powers of
monomials ideals.

19.2 Project 2: The Symbolic Defect of Monomial Ideals

(This project is related to Chap. 11.) Let I be a homogeneous ideal in the polynomial
ring R = K[x1, . . . , xn]. For any positive integer m, the R-module I (m)/Im is a
Noetherian module, so it has finite number of generators. Here, I (m) denotes the
m-th symbolic power of I . We define the m-th symbolic defect of I to be

sdefect(I,m) = the number of minimal generators ofI (m)/Im.

This definition first appeared recently in [79]. As a consequence, we still do
not know a lot about these numbers, and we believe there are a number of
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interesting questions one could ask about sdefect(I,m). In particular, this project
is to understand the following question:

Question 19.2 If I is a (squarefree) monomial ideal, what is sdefect(I,m)?

Given that this is a broad question, we suggest the possible refinements of this
question.

• Let I be either the edge ideal or cover ideal of a finite simply graph. What can be
said about sdefect(I, s)? Is there a combinatorial interpretation of this number?

• Continuing from the above point, you may want to first consider the case of cover
ideals and the value s = 2. Using work of Francisco, Hà, and Van Tuyl [76], you
can find a irreducible decomposition of J (G)2. The paper Dupont and Villarreal
[61] may be useful to describe the minimal generators of J (G)(2).

• Not much is known about the sequence {sdefect(I,m)}m∈N. Can you find a
monomial ideal where the sequence is monotonic?

One other paper that has looked at the module I (m)/Im is the paper of Arsie and
Vatne [4] (a former PRAGMATIC project!). One of their results considers n + 1
general sets of points in P

n. In this case, the ideal of the general sets of points is also
a monomial ideal. This paper may also be useful.

19.3 Project 3: Regularity of Powers of Ideals

(This project is related to Chaps. 4–6.) For any homogeneous ideal I ⊆
K[x1, . . . , xn], it is known that for q � 0, the regularity of Iq is described by
a linear polynomial, that is, reg(Iq) = aq + b for some constants a and b. We
currently do not have a complete understanding of the meaning of the values a and
b.

When I = I (G) is the edge ideal of a graph G, our understanding of reg(I (G)q)

is better, but still far from complete. This suggests the following broad question:

Question 19.3 Let I = I (G) be edge ideal of a graph. What is reg(I (G)q) for q �
0? A strongly related but much less studied question is that for symbolic powers;
what can be said about the regularity of symbolic powers, that is, reg(I (G)(q), with
q � 0?

There are several directions to approach this question:

• Find general lower and upper bounds for reg(I (G)q) for q � 0, and characterize
graphs which obtain these bounds. For instance, it was shown by Beyarslan, Hà
and Trung [12] that if ν(G) denotes the induced matching number of a graph G

then for all q ≥ 1, we have

reg(I (G)q) ≥ 2q + ν(G) − 1.
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It was conjectured that reg(I (G)q) ≤ 2q + reg(I (G)) − 2 for all q ≥ 1.
• Characterize graphs that give the simplest linear function, i.e., characterize

graphs G such that reg(I (G)q) = 2q for all q � 0. Previous works of Francisco,
Hà, Van Tuyl, Nevo and Peeva seem to suggest that the necessary and sufficient
condition is ν(G) = 1.

• Find lower and upper bounds for reg(I (G)(q)) similar (or not) to those of
reg(I (G)q). In particular, characterize graphs for which reg(I (G)(q)) = 2q for
all q � 0.

• Run examples to see if reg(I (G)(q)) = reg(I (G)q) for all q � 0. If not, then is
reg(I (G)(q)) an asymptotic linear function for q � 0?

• Investigate reg(I (G)(q)) for special classes of graphs for which the symbolic
powers I (G)(q)) are well understood, for example perfect graphs.

Some references to this problem include the following papers: [2, 3, 15, 122, 143].

19.4 Project 4: Beyond Perfect Graphs

(This project is related to Chap. 2.) A graph G is perfect if both G and its
complement Gc do not contain induced cycles of odd length greater than or equal to
five. As was first shown in [76], and discussed Chap. 2, the associated primes of the
powers of cover ideals of perfect graphs are fairly well understood. For example, we
know that the cover ideals J (G) of perfect graphs satisfy the persistence property.

In the graph theory literature, there are a number of generalizations of perfect
graphs, including to hypergraphs (see, for example, [132]). This leads to the
question:

Question 19.4 Are there families of hypergraphs that generalize perfect graphs and
has some of the similar algebraic properties (e.g., do their edge ideals have the
persistence property)?

Some ideas to get you started:

• Chordal graphs are examples of perfect graphs. There have been some attempts
at generalizing chordal graphs to hypegraphs; for example, see [67]. We are not
aware of anyone studying the associated primes of these hypergraphs. There may
be enough structure that you can exploit it.

• As was shown in Chap. 2, if Ik : I = Ik−1 for all k ≥ 2, then I has the
persistence property. It might also be interesting to check that if J = J (G) is the
cover ideal of a perfect graph, then J (G) has this property. This would give a new
proof for the persistence property of the cover ideals of perfect graphs. (In [76],
the proof is much more explicit in the sense that all the elements of ass(J (G)s)

are calculated for each s.)
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19.5 Project 5: Resurgences for Fat Points

(This project is related to Chaps. 8 and 9.) Let Z = m1p1 + · · · + msps be a fat
point subscheme of PN , so I = I (Z) = ∩I (pi )

mi . The resurgence ρ(I) is defined
to be

ρ(I) = sup
{m

r

∣

∣

∣ I
(m) �⊆ I r

}

.

The values of ρ(I) are known for some Z, mostly reduced [21, 51, 59, 91].
It is of interest to understand what the values the resurgence can take more
comprehensively.

• It should be possible to give a complete answer for ρ(I) for all choices of mi

when the points pi are collinear points of the plane.
• It should be possible to give a complete answer for ρ(I) for all choices of mi

when the points pi are the coordinate vertices of PN , at least when N = 2.
• It would also be of interest to determine ρ(I) for each possible Z for small

numbers of points in the plane, at least when Z is reduced. (See [83, 90] for
classifications of the possible Z, according to their Hilbert functions.)

19.6 Project 6: Unexpected Curves

(This project is related to Chap. 13.) The problems here are based on [43, 53,
70]. The SHGH Conjecture [90, 96, 113, 150] classifies all (s + 1)-tuples (t +
1,m1, . . . ,ms) where a fat point subscheme X = m1p1 + · · · + msps ⊂ P

2

supported at general points pi fails to impose independent conditions on V = Rt+1;
i.e., such that

dimK(I (X)t+1 ∩ V ) > min
{

0, dimK V −
∑

i

(

mi + 1

2

)

}

.

(Of course, in this situation we have I (X)t+1 ∩ V = I (X)t+1.) In all known cases,
the gcd of I (X)t+1 is divisible by Fm for some m > 1 where F is irreducible and
defines a rational curve of some degree d where d2 −∑p(multp(F ))2 = −1, hence

m2(d2 −∑p(multp(F ))2) < −1. In particular, there are no known cases where
dimK[I (X)]t+1 = 1 and [I (X)]t+1 defines a reduced irreducible curve.

Now let Z = n1q1 + · · · + nrqr ⊂ P
2 where the points qi are distinct and let

V = I (Z)t+1. Note that [I (X)]t+1 ∩ V = [I (X + Z)]t+1. Then it can happen that

dimK([I (X)]t+1 ∩ V ) > min
{

0, dimK V −
∑

i

(

mi + 1

2

)

}

,
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even with dimK[I (X + Z)]t+1 = 1 where [I (X + Z)]t+1 defines a reduced
irreducible curve C, called an unexpected curve. In all known cases, the unexpected
curve is rational and we have X = m1p1, t = m1 + 1 and nj = 1 for all j . In these
cases we have (t + 1)2 − m2

1 −∑j n2
j < −1.

Over the complex numbers, the least that t + 1 can be is 4, but only one example
is known in this degree (found in [53], described in detail in Example 13.4(d) and
shown in Fig. 13.1).

This raises some questions.
• Find other unexpected quartics, so X = 3p where p is general, Z = q1 +

· · · + qr , r ≥ 9, or show there are no others. One approach here may be to look at
possible configurations of 8 points, Z′ = q1 +· · ·+q8 (see [83]) and check whether
I (X+Z′)4 has any base points not in Z′ as p varies. The point here is that no matter
how the points of Z′ are arranged there is always a quartic Q(Z′, p) containing Z′
with a general triple point p; the issue is whether there is a choice of Z′ such that
there is an additional point q such that for every choice of p we have q ∈ Q(Z′, p).

• Look for possible examples where X is not a single fat point. There is always a
curve of degree 2m with 3 points of multiplicity m, one point of multiplicity m − 1
and 2m simple points. It may be worth making some of these points general to play
the role of X, fix the rest to play the role of Z′, and see if there is a point q such that
every curve of degree 2m through X + Z′ also vanishes at q .



Chapter 20
The Art of Research

As is standard at PRAGMATIC, the participants were divided into small groups
to work on open research problems, based upon their ranked preferences of
the problems. In this iteration of PRAGMATIC, we, as instructors, presented a
number of open research problems (see the previous chapter) and some suggested
approaches. After the initial assignment of projects, we shifted our focus from
lecturing to a focus on mentoring the groups. Not only did we suggest how to make
progress on their specific projects, but we also gave more general advice on how to
do research and how to present the results.

On the fourth day of the workshop, we met with all nine groups in order to help
them get started. As was to be expected, for many of the participants, attacking a
new research problem was a new experience. As a result, we set aside some extra
time at the end of the first week to give some general advice on how to carry out
mathematical research. We have included some of this advice below. We hope that
this information will help you develop your own mathematical research program in
the years to come.

20.1 Jump In!

When attacking a new research problem, we suggest that you start working on
it as quickly as possible. Using the tools you currently know, ask yourself what
you can do with the problem. In particular, we highly recommend that you do not
worry about seeking out all of the background material on your problem before
starting. You may feel that you need to learn and understand a large quantity of
background material. Unfortunately, this could become an infinite regression, with
the end result that you never spend any time working on your problem. Part of the
fun of mathematical research is working on your own problem, based on your own
ideas, and coming to your own understanding of the problem.
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Of course, at some point you will need to look carefully at the literature to see
what has been done and to some extent how. But it is easier to integrate background
material as your own understanding develops. So, rather than wait to start research
until you know everything that has been done or until you’ve learned everything you
think you might need to know, we suggest that you learn as you go. When you get
stuck, take a look at what has been done in the area. However, don’t stop working
on your project to read and completely understand a paper; as soon as you get a new
idea, go back to working on your project (possibly reading the paper in parallel, but
never in lieu of, working on your project).

20.2 How to Read a Paper When You Feel You Must

Here are a few words of advice about reading papers that might be useful. Never let
authors hijack your agenda. Never just read a paper, but rather be an active reader:
look at the abstract and think about what the authors claim to be doing. Ask yourself
questions: does this seem like the right approach? Are the questions really what you
would ask? Are the claimed results really the right answers? Read the introduction
and look over the bibliography: what’s the motivation? Where did the problem come
from? Where do the authors go with it? What was known before? Who are the
players? What did they do? Page through the paper and find the main results. How
are they stated? Do they make sense? Are the theorems plausible, based on what
you know? Try to work out examples (or counterexamples!) of the main results. To
what extent do the theorems answer the questions the paper poses? What results
are missing (that is, what kinds of results would you have expected that don’t seem
to be included)? How, in a general sense, do the authors get their results? What
new concepts do they introduce? If after this it seems worthwhile to go further, try
to sketch out proofs of the results you’re mainly interested in: do your approaches
seem likely to go through? If not, where do they run into an obstruction? How
do the authors get around the problems you run into? Can the authors’ proofs be
made shorter, or clearer? Do there seem to be gaps? Do there seem to be mistakes?
What would need to be true to fill the apparent gaps or to fix the possible mistakes?
Annotate the paper with your own thoughts, questions and corrections; go back and
modify your annotations as your understanding increases. If the paper merited the
attention, keep a record of your annotations so that you can go back later and remind
yourself of your thinking. In the end, think about how you would have written the
paper.

20.3 Do Experiments and Make Examples

Now that you have “jumped in” and want to start work on your problem, what should
you do? Of course, your end goal is to understand something you didn’t understand
before, and hopefully, as a result, prove an interesting theorem. But before you get
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to prove your theorem, you need to develop your understanding of what’s true and
what’s not so that you have an idea of what your statement should be. At this stage,
you want to take your problem and ask yourself how many examples can you make.

Depending upon the problem, computer software may allow you to make lots
of examples (maybe thousands!) but certainly try to make at least some examples
somehow. You want to take this data, and think of useful ways of presenting it (e.g.,
making tables) that allow you to look for patterns. For some problems (e.g., suppose
your problem is related to finite simple graphs) you should try to do exhaustive
searches for small parameters. Note that the process of making these examples will
help you understand the objects you want to study. Making good computer code
might also be useful for future research projects (so make sure you document it
properly).

20.4 Make Guesses

Now that you have examples and data, start looking for patterns, and start guessing
what happens. At any given point, you should have a “working” conjecture, that
is, a statement you are actively trying to prove or disprove. If you find a proof,
great! If you find a counterexample, use it to change your “working” conjecture.
For example, do you need to add more hypotheses? Do you need to change the
conclusion? Or do you need to throw out your statement and start all over?

You do not need many examples to make a conjecture. If something seems to
work for three examples, and it seems to work for random examples, make this your
conjecture. Although it is unlikely it is true, you will learn a lot by finding out why
your statement is wrong.

20.5 Write Proofs for Special Cases

When doing research, we suggest that you specialize as much as possible. For
example, you may be doing something with the edge ideals of graphs. Instead of
trying to prove your statement for all graphs, can you prove it for a special family
of graphs (e.g., cycles, complete graphs)? Similarly, if you are studying points in
projective space, can you prove your result for points on a line? Once you have a
good guess and can prove your “working” conjecture for a special subset of cases,
we recommend that you write up a clean and complete proof for this special case.

Don’t worry that you can only prove something for a small family. The important
thing is that you have proved something. Furthermore, after writing out a proof with
all of the details, look at it again and see what you actually proved. Your proof
may be more general than the statement you started with, or you may see how to
generalize your proof to handle larger classes of cases. Or perhaps you can align
your hypotheses to fit the proof; e.g., check what property you really need for
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the cases your proof handles, and extend your result to all families that have this
property.

And of course, another advantage of documenting your attempts and writing up
your results is that you will be able to more efficiently get back into it after having
to step away, and to recreate your arguments in the future. It’s very common to now
and then not to have time to do research (e.g., because of teaching responsibilities).
You do not want to lose or forget your results just because you didn’t take the time
to write them down.

20.6 Develop Parallel Questions

When tackling a research problem, we suggest you think of related questions. For
example, suppose that you are looking at some properties of points in P

2. While
you are studying this problem, you can ask yourself: does this property also work
for points in P

n? But note that points in P
2 are also an example of a codimension

two subcheme in P
2. So, you can ask if your results also hold for codimension

two subschemes. If you get stuck on one approach, you can move to a related, but
different, problem.

At any given point, you want to be attacking your problem from various angles.
When you get stuck on one approach, you can move to a different approach. Not all
variations of the problem will be successful, but you will learn something even from
the unsuccessful approaches.

20.7 Writing Papers

Finishing the research does not end the need for creativity. The end result of a
successful project is writing your research up for publication, and the writing also
takes thought, creativity (and flexibility, especially if you have coauthors)! It’s not
enough that your theorems be true. You also want to make them interesting. Here
we suggest that you consider not getting too attached to your initial formulations. Is
there a way to simplify the statements of your main theorem? Can you substantially
simplify your proofs by avoiding some special cases? Can you give a simple
clean statement with a compelling proof by focusing on the main cases, and move
complications to subsidiary results? Think about your write up from the point of
view of the reader. Is there a way to present your results that would better grab the
interest of a reader? Think about what makes your results interesting and compelling
and try to present things to highlight what’s of interest and what’s compelling. Lead
off with simple clean statements with clear proofs if you can; perhaps save the more
comprehensive but more complicated theorems and proofs for later in your write up.
Once you have their attention and interest, readers will be more willing (and able)
to stick with you for the complexities that come later!
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If you have coauthors, things can become more delicate. Be sensitive not only to
what you think will be important to possible readers, but also to what is important to
actual coauthors. Try to see things from your coauthors’ perspective. No one likes to
see their stuff end up on the cutting room floor. Think about how to highlight what
your coauthors have done and still keep the write up clear and concise.

20.8 Collaboration

This comment is not directly about how to do research, although it is important.
Working together with others on a research problem is an enjoyable experience. To
get the most out of the experience, we wanted to make a couple of suggestions.

First, use the strengths of your collaborator(s). For example, if someone in your
group is good at computer programming, have them work on developing examples.
Second, although you are working together, make sure you take time to work on
your own. It is not necessary for you to spend all your time together. As an example,
meet together in the mornings to discuss your plans for the day and share ideas.
Then allow group members to work individually, if they want, and get back to
together later in the day to discuss your successes and failures. And finally, be a good
collaborator. This includes listening to the ideas of others, responding to emails from
your collaborators in a timely manner, and helping to write up the results (when it
comes to write up your results).

20.9 Presenting Your Work

Talking math with others can be really helpful. What you say about what you’re
doing, and to whom, depends on where you’re at in your project. Talking to
collaborators or mentors is good at any time. If you talk to a wider audience you
risk getting them interested in your project and jumping in themselves to work on it.
This is great after you’ve done what you wanted to do, and can be very helpful for
generating new ideas and alternative directions for you and other to work on. But
sometimes you may want to keep working on something without others poaching,
and that’s OK too.

But eventually you’ll want to present your results, perhaps in a seminar or a
conference. At that point you have to think about what to say. What you say will
depend on how much time you have, who is in the audience, and what you want
them to get out of your talk. You might be surprised at how little you can get across
in a given amount of time; don’t try to do more than your audience can absorb!
This can be a particular issue if you use slides rather than giving a board talk. You
can squeeze an almost unlimited amount of information when using slides, but your
audience has a strictly limited ability to absorb information. And if you have too
much material when giving a board talk, the result is usually that you run out of time
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before getting to what you really wanted to cover. (Especially if you give a board
talk, avoid sounding overly rehearsed, but know your lines! Know ahead of time
how to say what you plan to say. This will help you use your time most efficiently
without getting bogged down in extraneous explanations or straying into unplanned
exposition.)

Sometimes the thing that you had to work the hardest on is not the thing that the
audience will be most interested to hear about. Make sure you give some background
so the audience can appreciate your results. Simplify the statements of your results,
and possibly reformulate the necessary definitions, to allow you to get across the
main ideas in the least technical way possible. Maybe give an example instead of the
actual definition or instead of a theorem statement. Always keep in mind that you
are in charge. What you say will determine what kinds of questions the audience
has. Don’t bring up a topic if you don’t want the audience to ask about it (and
thereby make you use time on extraneous issues). Try to avoid going into detail on
something and ending by saying “but you don’t need to know all that, all you need
to keep in mind is . . .". Think about how your talk would come across to the listener,
then recast it to try to make the impression you’re aiming for. When someone who
attended your talk meets a colleague who couldn’t attend, the second one may ask
the first what you talked about. Be sure you said something that the first person can
tell the second in a sentence or two. It can even be good to work backward: what
main ideas or results do you want them to come away with? What do you need to
cover to get to these main ideas and results? What’s the least technical and most
compelling route to get there? And finally, ending a little early is OK, but never go
over your allotted time!
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